Math, asked by abdulahadmzf, 1 year ago

solve plzzz I make you brainlist ​

Attachments:

Answers

Answered by swizswizzle121517
1

Answer:

sorry don't know , u can ask from other

Answered by mayank885
1

Step-by-step explanation:

Hence proved

x = (3 - 2 \sqrt{2} ) \\  \frac{1}{x }  =  \frac{1}{3 -  2\sqrt{2} } \\ \frac{1}{3 -  2\sqrt{2} }  \times  \frac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} }  \\  \frac{3 + 2 \sqrt{2} }{ {3}^{2}  -  {2 \sqrt{2} }^{2} }  \\  \frac{3 + 2 \sqrt{2} }{9 - 8}  \\  \frac{3 + 2 \sqrt{2} }{1}  \\ 3 + 2 \sqrt{2}  \\ now \: solving \sqrt{x}  -  \frac{1}{ \sqrt{x} }  \\  \sqrt{3 - 2 \sqrt{2}  }  -  \sqrt{3 + 2 \sqrt{2} }  \\  \sqrt{2 + 1 - 2 \times 1 \times  \sqrt{2} }  -  \sqrt{2 + 1 + 2 \times 1 \times  \sqrt{2} }  \\   \sqrt{ ({ \sqrt{2}  - 1})^{2} }  -  \sqrt{( { \sqrt{2} + 1 })^{2} }  \\  (\sqrt{2 }  - 1) - ( \sqrt{2}  + 1) \\  \sqrt{2}  - 1 -  \sqrt{2}  - 1 \\  - 2 \\ \\   \sqrt{x}  -  \frac{1}{ \sqrt{x} } =  - 2

Similar questions