Math, asked by julu57, 5 months ago

solve plzzzz kal exam hai ??? ​

Attachments:

Answers

Answered by BrainlyEmpire
137

\huge{\underline{\pink{\tt{Given,}}}}

Divide 240 into three such parts so that 1/3 of the first 1/4 of the second and 1/5 of the third part are equal.

\huge{\underline{\pink{\tt{To\:Find,}}}}

The First Part = ?

The Second Part = ?

The Third Part = ?

\huge{\underline{\pink{\tt{Solution,}}}}

\longrightarrow \sf{Suppose\:the\:first\:part\:be\: \boxed{\sf{a}}}

\sf{And,Second\:part\:be\: \boxed{\sf{b}}\:,Third\:part\:be\: \boxed{\sf{c}}}

\boxed{\underline{\red{\sf{Now,According\:to\:the\:Question :}}}}

\bigstar \boxed{\sf{a+b+c = 240}}....1)

\bigstar \boxed{\sf{\dfrac{1}{3}a = \dfrac{1}{4}b = \dfrac{1}{5}c}}

According to First Condition :-

\mapsto \sf{\dfrac{1}{3}a = \dfrac{1}{4}b}

\mapsto \boxed{\sf{a = \dfrac{3}{4}b}}...2)

According to Second Condition :-

\mapsto \sf{\dfrac{1}{4}b = \dfrac{1}{5}c}

\mapsto \boxed{\sf{b = \dfrac{4}{5}c}}...3)

\bigstar \boxed{\underline{\pink{\sf{Now,Put\:the\:Value\:of\:2\:and\:3\:Equation\: in\:1\:Equation}}}}

\longmapsto \sf{\dfrac{3}{4}b + \dfrac{4}{5}c + c = 240}

\longmapsto \sf{\dfrac{3}{4}b + \dfrac{4c + 5c}{5} = 240}

\longmapsto \sf{\dfrac{3}{4}b + \dfrac{9c}{5}  = 240}

Now, Put the Value of b :-

\longmapsto \sf{\dfrac{3}{4} \times \dfrac{4}{5} + \dfrac{9c}{5} = 240}

\longmapsto \sf{\dfrac{3}{5}c + \dfrac{9}{5}c = 240}

\longmapsto \sf{\dfrac{3c + 9c}{5} = 240}

\longmapsto \sf{12c = 1200}

\longmapsto \sf{c = \dfrac{1200}{12}}

\longmapsto \boxed{\sf{c = 100}}

Therefore,

\implies \sf{b = \dfrac{4}{5} c}

\implies \sf{b = \dfrac{4}{5} \times 100}

\implies \boxed{\sf{b = 80}}

Now, Find Value of a :-

\implies \sf{a = \dfrac{3}{4}b}

\implies \sf{a = \dfrac{3}{4} \times 80}

\implies \boxed{\sf{a = 60}}

\rule{200}2


ZzyetozWolFF: Good!
Answered by Anonymous
1

Let the following three parts be x₁ , x₂ , and x₃

According to question ,

\begin{gathered}\sf\frac{x_1}{3} = \sf\frac{x_2}{4} = \sf\frac{x_3}{5} = k(say) \\ \\ x_1 = 3k \\ \\ x_2 = 4k \\ \\ x_3 = 5k \\ but \\ \\ x_1 + x_2 + x_3 = 240 \\ \\ 3k + 4k + 5k = 240 \\ \\ 12k = 240 \\ \\ k = 20 \\ \\ x_1 = 3*20 = 60 \\ \\ x_2 = 4*20 = 80 \\ \\ x_3 = 5*20 = 100\end{gathered}

Similar questions