Math, asked by jayeshpathaklovesh49, 11 months ago

solve plzzzzzzzzzzzzzzzzz​

Attachments:

Answers

Answered by Anonymous
86

|| ☆.QUESTION.☆ ||

Let, A be a sequence defined by\mathrm{\: A_{1}\: =\: 1\, \:A_{2}\: = \:1\:and \:( A_{n} = A_{n-1}\:+ \:A_{n-2 })}for all n>2, then the value of \mathrm{\:\frac{A_{4}}{A_3}} is ..?

|| ✪.ANSWER.✪ ||

Given Here:-

  • \mathrm{\:A_{1}\:=\:1}....(1)
  • \mathrm{\:A_{2}\: = \:1}...(2)
  • \mathrm{\:A_{n}\: = \:A_{n-1}\: + \:A_{n-2}}......(3)

Find Here:-

  • Value of\mathrm{\:\frac{A_{4}}{A_{3}}}

Explanation:-

[ Keep value of n = 1,2,3,4,... in equation (3) ]

Case(1):-

  • When, n = 3,

\mathrm{\:A_{3}\: = \:A_{3-1}\:+\:A_{3-2}}

\mathrm{\:A_{3}\:=\:A_{2}\:+\:A_{1}}

[Keep value by equ. (1) and (2) ]

\mathrm{\:A_{3}\:=\:1\:+\:1}

\mathrm{\:A_{3}\:=\:2}....(4)

Case(2):-

  • When ,n = 4,

\mathrm{\:A_{4}\:=\:A_{4-1}\:+\:A_{4-2}}

\mathrm{\:A_{4}\:=\:A_{3}\:+\:A_{2}}

[ Keep value by equ. (2) and (4) ]

\mathrm{\:A_{4}\:=\:2\:+\:1}

\mathrm{\:A_{4}\:=\:3}...(5)

Now, Calculate

\mathrm{\:\frac{A_{4}}{A_{3}}}

[keep value by equ. (4) and (5) ]

\bold{\mathrm{\bf{\:\frac{3}{2}\:(ANS).}}}

___________________

Similar questions