Computer Science, asked by MiniDoraemon, 1 month ago

Solve previous year Question of iit jee

Chapter :- sequence and series​

Attachments:

Answers

Answered by King412
6

  \\ \bigstar  \large \underline{ \underline{\bold{Solution :- }}} \\

 \\  \sf  :  \: 1 +  \frac{1}{4(2!)} +  \frac{1}{16(4 ! )}  +  \frac{1}{64(6 ! )}  +  ... \infty  \\

 \\  \sf   \implies\: 1 +  \frac{1}{ {2}^{2} (2!)} +  \frac{1}{ {2}^{4} (4 ! )}  +  \frac{1}{ {2}^{6} (6 ! )}  + ... \infty  \\

 \\  \sf   \implies\:  \frac{1}{2} \bigg[2 \bigg(1 +  \frac{1}{ {2}^{2} (2!)} +  \frac{1}{ {2}^{4} (4 ! )}  +  \frac{1}{ {2}^{6} (6 ! )}  + ... \infty  \bigg)\bigg ]\\

 \\  \sf   \implies\:  \frac{1}{2} \bigg[2 \bigg(1 +  \frac{ {x}^{2} }{ 2!} +  \frac{ {x}^{4} }{  4 ! }  +  \frac{ {x}^{6} }{ 6 ! }  + ... \infty  \bigg)\bigg ]\\

 \\  \sf   \implies\:  \frac{1}{2} [ {e}^{x}   +  {e}^{ - x} ] \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (when \: x =  \frac{1}{2} )\\

 \\  \sf   \implies\:  \frac{1}{2} [ {e}^{ \frac{1}{2} }   +  {e}^{ -  \frac{1}{2} } ] \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\\

 \\  \sf \implies \:  \frac{e + 1}{2 \sqrt{e} }  \\

Answered by rk8810123
1

Answer:

option a is correct answer is

Attachments:
Similar questions