Solve previous year Question of iit jee
Chapter :- sequence and series
Attachments:
Answers
Answered by
6
The correct answer is (c) 11/41
(a1+a2+…ap.)/(a1+a2+…aq) = p2/q2
(p/2)[(2a1+(p-1)d)] / (q/2)(2a1+(q-1)d) = p2/q2
(2a1+(p-1)d) / (2a1+(q-1)d) = p/q
Cross multiplying
q(2a1+(p-1)d) = (2a1+(q-1)d)p
2a1(p-q) = (pq-q-qp+p)d
2a1(p-q) = (p-q)d
d = 2a1
a6/a21 = (a1+5d)/(a1+20d)
= (a1+10a1)/(a1+40a1)
= 11a1 / 41a1
= 11/41
Answered by
7
EXPLANATION.
a₁, a₂, a₃, . . . . . be terms of an A.P.
As we know that,
⇒ (2a₁ + (p - 1)d)/(2a₁ + (q - 1)d) = p/q.
⇒ [2a₁ + (p - 1)d]q = [2a₁ + (q - 1)d]p.
⇒ [2a₁ + (pd - d)]q = [2a₁ + (qd - d)]p.
⇒ 2a₁q + pqd - dq = 2a₁p + pqd - dp.
⇒ 2a₁q + pqd - dq - 2a₁p - pqd + dp.
⇒ 2a₁(q - p) = d[(q - 1)p - (p - 1)q].
⇒ 2a₁(q - p) = d(q - p).
⇒ d = 2a₁.
⇒ a₆/a₂₁ = a₁ + 5d/a₁ + 20d.
⇒ a₁ + 5(2a₁)/(a₁ + 20(2a₁)) = 11a₁/41a₁ = 11/41.
Option [C] is correct answer.
Similar questions