Math, asked by MiniDoraemon, 2 months ago

Solve previous year Question of iit jee

Chapter :- sequence and series​

Attachments:

Answers

Answered by ridhya77677
13

Answer:

x, y and z are in AP.

then, 2y = x+z ----(1)

 {  \tan }^{ - 1} x \: , \:   { \tan }^{ - 1} y \: and \:  { \tan }^{ - 1} z \: are \: also \: in \: AP.

then,

2 { \tan}^{ - 1} y =  { \tan }^{ - 1} x +  { \tan }^{ - 1} z

→ { \tan }^{ - 1} ( \frac{2y}{1 -  {y}^{2} } ) =  { \tan}^{ - 1} ( \frac{x + z}{1  - xz} )

→ \frac{2y}{1 -  {y}^{2} }  =  \frac{x + z}{1  - xz}

from eqn(1)

→ \frac{x + z}{1 -  {y}^{2} }   = \frac{x + z}{1  - xz}

→ \frac{1}{1 -  {y}^{2} }  =  \frac{1}{1 - xz}

→1 - xz = 1 -  {y}^{2}

→ - xz =  -  {y}^{2}

→ {y}^{2}  = xz

again, put value of y from eqn (1)

→ {( \frac{x + z}{2} })^{2}  = xz

→ \frac{ ({x + z})^{2} }{4}  = xz

→ {x}^{2}  +  {z}^{2}  + 2xz = 4xz

→ {x}^{2}  +  {z}^{2}  + 2xz - 4xz = 0

→ {x}^{2} +   {y}^{2}  - 2xz = 0

→ {(x - z)}^{2}  = 0

→x - z = 0

→x = z

now, from eqn(1)..

2y = x + x

→2y = 2x

→y = x

→ x = y = z

Answered by Asterinn
10

 \rm x , y  \: and \:  z \:  are \:  in \:   A.P \\   \\  \therefore \rm 2y = x + z...(1)\\  \\ \rm  {tan}^{ - 1} x ,{tan}^{ - 1} y  \: and \: {tan}^{ - 1} z \:  are \: also \:  in \:   A.P  \\ \\   \therefore \rm 2{tan}^{ - 1} y = {tan}^{ - 1} x +{tan}^{ - 1}  z...(2)

 \rm \longrightarrow 2{tan}^{ - 1} y = {tan}^{ - 1} x +{tan}^{ - 1}  z \\  \\ \rm \longrightarrow {tan}^{ - 1}  \bigg(\frac{2y}{1 -  {y}^{2}  } \bigg)={tan}^{ - 1}  \bigg(\frac{x + z}{1 - x z  } \bigg)\\  \\ \rm \longrightarrow  \bigg(\frac{2y}{1 -  {y}^{2}  } \bigg)= \bigg(\frac{x + z}{1 - x z  } \bigg)

Now, 2y = x+z

\rm \longrightarrow  \bigg(\dfrac{x + z}{1 -  {y}^{2}  } \bigg)= \bigg(\dfrac{x + z}{1 - x z  } \bigg) \\  \\ \rm \longrightarrow \dfrac{1 - x z}{1 -  {y}^{2}  } = \dfrac{x + z}{ x + z } \\  \\ \rm \longrightarrow \dfrac{1 - x z}{1 -  {y}^{2}  } = 1\\  \\ \rm \longrightarrow {1 - x z} = 1 -  {y}^{2}\\  \\ \rm \longrightarrow { - x z} =  -  {y}^{2}\\  \\ \rm \longrightarrow { x z} =    {y}^{2}...(3)

➡️2y = x+z

➡️(2y)² = (x+z)²

➡️4y² = x²+z²+ 2xz

y²= xz

➡️4xz= x²+z²+ 2xz

➡️ 4xz - x²- z² - 2xz =0

➡️ 2xz - x²- z² =0

➡️ -2xz + x² +z² =0

➡️ (x -z)² =0

➡️ x -z =0

➡️ x = z

➝ 2y = x+z

put x = z

➝ 2y = z+z

➝ 2y = 2z

➝ y = z

Therefore, x= y = z

Also, from equation (3) we can see that x,y,z are in G.P and in the question it is given that x,y,z are in A.P.

If x, y,z are in both G.P and A.P then x=y=z

Answer :

Option (a) x=y=z is correct

Similar questions