Math, asked by MiniDoraemon, 2 months ago

Solve previous year Question of iit jee

Chapter :- sequence and series​

Attachments:

Answers

Answered by ridhya77677
2

Answer:

let the three positive numbers forming GP be a, ar , ar².

Now,

Middle term of GP is doubled,,

a, 2ar , ar² are in AP.

→2ar =  \frac{a +  {ar}^{2} }{2}

→4ar = a(1 +  {r}^{2} )

→4r = 1 +  {r}^{2}

→ {r}^{2}  - 4r + 1 = 0

By the quadratic formula :-

r \:  =  \frac{ - ( - 4)± \sqrt{ {( - 4)}^{2}  - 4 \times 1 \times 1} }{2 \times 1}

→r =  \frac{ 4 \:±  \sqrt{16 - 4} }{2}

→r =  \frac{4 \:±  \sqrt{12} }{2}

→r =  \frac{4±2 \sqrt{3} }{2}

→r =  \frac{2(2±  \sqrt{3} )}{2}

So,,

r = 2± \sqrt{3}

Acc to ques, The GP is increasing so we will take 'r' as positive value,

hence, the common ratio of GP, r = 2+√3

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let suppose that 3 numbers in GP series as

 \red{\rm :\longmapsto\:a,\: ar, \:  {ar}^{2}  \: such \: that \: r > 1}

Now, it is further given that, if middle term is doubled the numbers are in AP.

 \red{\rm :\longmapsto\:a,\: 2ar, \:  {ar}^{2}   \: are \: in \: AP}

We know, in AP series, common difference us same

 \red{\rm :\longmapsto\:\: 2ar - a =  \:  {ar}^{2}   - 2ar}

\rm :\longmapsto\: {ar}^{2} + a = 4ar

On cancel out a, we get

\rm :\longmapsto\: {r}^{2} + 1 = 4r

\rm :\longmapsto\: {r}^{2} - 4r + 1 = 0

Its a quadratic in r, so to find out the value of r, we use Quadratic Formula,

\rm :\longmapsto\:r = \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a}

Here,

\rm :\longmapsto\:a = 1

\rm :\longmapsto\:b =  - 4

\rm :\longmapsto\:c =  1

Thus,

\rm :\longmapsto\:r = \dfrac{ - ( - 4) \:  \pm \:  \sqrt{ {( - 4)}^{2}  - 4(1)(1)} }{2(1)}

\rm :\longmapsto\:r = \dfrac{4 \:  \pm \:  \sqrt{ 16 - 4} }{2}

\rm :\longmapsto\:r = \dfrac{4 \:  \pm \:  \sqrt{ 12} }{2}

\rm :\longmapsto\:r = \dfrac{4 \:  \pm \:  \sqrt{ 2 \times 2 \times 3} }{2}

\rm :\longmapsto\:r = \dfrac{4 \:  \pm \:  2\sqrt{3} }{2}

\rm :\longmapsto\:r =  \: 2 \pm \:  \sqrt{3}

\bf :\implies\:r = 2 +  \sqrt{3}  \:  \: as \: r > 1

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underbrace{ \boxed{ \bf \: Option \: (d) \: is \: correct}}

Additional Information :-

For Geometric Progression,

 \red{\rm :\longmapsto\:a_n =  {ar}^{n - 1}}

 \red{\rm :\longmapsto\:S_n = \dfrac{a( {r}^{n}  - 1)}{r - 1} \:  \: provided \: that \: r \ne \: 1}

Similar questions