Solve previous year Question of iit jee
Chapter :- sequence and series
Answers
Taking out (4/5)² as common :-
Sum of the series is given as (16/5)m.
Answer :-
Option (b) 101 is correct
Step-by-step explanation:
\rm \longrightarrow {\bigg( 1\dfrac{3}{5}\bigg) }^{2} +{\bigg( 2\dfrac{2}{5}\bigg) }^{2} + {\bigg( 3\dfrac{1}{5}\bigg) }^{2} + {4}^{2} + {\bigg( 4\dfrac{4}{45}\bigg) }^{2} ... ⟶(1
5
3
)
2
+(2
5
2
)
2
+(3
5
1
)
2
+4
2
+(4
45
4
)
2
...
\rm \longrightarrow {\bigg( \dfrac{8}{5}\bigg) }^{2} +{\bigg( \dfrac{12}{5}\bigg) }^{2} + {\bigg( \dfrac{16}{5}\bigg) }^{2} + {4}^{2} + {\bigg( \dfrac{24}{5}\bigg) }^{2} ...⟶(
5
8
)
2
+(
5
12
)
2
+(
5
16
)
2
+4
2
+(
5
24
)
2
...
\rm \longrightarrow {\bigg(2 \times \dfrac{4}{5}\bigg) }^{2} +{\bigg(3 \times \dfrac{4}{5}\bigg) }^{2} + {\bigg(4 \times \dfrac{4}{5}\bigg) }^{2} + {\bigg( 5 \times \dfrac{4}{5} }\bigg)^{2} + {\bigg(6 \times \dfrac{4}{5}\bigg) }^{2} ...⟶(2×
5
4
)
2
+(3×
5
4
)
2
+(4×
5
4
)
2
+(5×
5
4
)
2
+(6×
5
4
)
2
...
Taking out (4/5)² as common :-
\rm \longrightarrow {\bigg( \dfrac{4}{5}\bigg) }^{2} \bigg( {2}^{2} + {3}^{2} + {4}^{2} + ...{11}^{2} \bigg)⟶(
5
4
)
2
(2
2
+3
2
+4
2
+...11
2
)
\rm \longrightarrow {\bigg( \dfrac{4}{5}\bigg) }^{2} \bigg( {2}^{2} + {3}^{2} + {4}^{2} + ...{11}^{2} + {1}^{2} - {1}^{2} \bigg)⟶(
5
4
)
2
(2
2
+3
2
+4
2
+...11
2
+1
2
−1
2
)
\rm \longrightarrow {\bigg( \dfrac{4}{5}\bigg) }^{2} \bigg( {1}^{2} + {2}^{2} + {3}^{2} + {4}^{2} + ...{11}^{2} - {1}^{2} \bigg)⟶(
5
4
)
2
(1
2
+2
2
+3
2
+4
2
+...11
2
−1
2
)
\rm \longrightarrow {\bigg( \dfrac{16}{25}\bigg) } \bigg( \dfrac{11 \times (11 + 1) \times (22 + 1)}{6} - 1 \bigg)⟶(
25
16
)(
6
11×(11+1)×(22+1)
−1)
\rm \longrightarrow {\bigg( \dfrac{16}{25}\bigg) } \bigg( \dfrac{11 \times 2 \times 23}{1} - 1 \bigg)⟶(
25
16
)(
1
11×2×23
−1)
\rm \longrightarrow {\bigg( \dfrac{16}{25}\bigg) } \bigg( \dfrac{2 2 \times 23}{1} - 1 \bigg)⟶(
25
16
)(
1
22×23
−1)
\rm \longrightarrow {\bigg( \dfrac{16}{25}\bigg) } \bigg( 506 - 1 \bigg)⟶(
25
16
)(506−1)
\rm \longrightarrow \dfrac{16}{25} \times 505⟶
25
16
×505
\rm \longrightarrow \dfrac{16}{5} \times 101⟶
5
16
×101
Sum of the series is given as (16/5)m.
\rm \longrightarrow \dfrac{16}{5} \times 101 = \dfrac{16}{5} m⟶
5
16
×101=
5
16
m
\rm \longrightarrow 101 =m⟶101=m
Answer :-