Math, asked by MiniDoraemon, 2 months ago

Solve previous year Question of iit jee

Chapter :- sequence and series​

Attachments:

Answers

Answered by Asterinn
119

 \rm \longrightarrow   {\bigg( \dfrac{3}{4}\bigg) }^{3}  +{\bigg( 1\dfrac{1}{2}\bigg) }^{3}  + {\bigg( 2\dfrac{1}{4}\bigg) }^{3}  +  {3}^{3}  + {\bigg( 3\dfrac{3}{4}\bigg) }^{3} ...

 \rm \longrightarrow   {\bigg( \dfrac{3}{4}\bigg) }^{3}  +{\bigg( \dfrac{3}{2}\bigg) }^{3}  + {\bigg( \dfrac{9}{4}\bigg) }^{3}  +  {3}^{3}  + {\bigg( \dfrac{15}{4}\bigg) }^{3} ...

\rm \longrightarrow   {\bigg( \dfrac{3}{4}\bigg) }^{3}  +{\bigg(2 \times  \dfrac{3}{4}\bigg) }^{3}  + {\bigg(3 \times  \dfrac{3}{4}\bigg) }^{3}  +  {\bigg( 4 \times \dfrac{3}{4} }\bigg)^{3}  + {\bigg(5 \times  \dfrac{3}{4}\bigg) }^{3} ...

Taking out (3/4)³ as common :-

\rm \longrightarrow   {\bigg( \dfrac{3}{4}\bigg) }^{3}  \bigg(1 +  {2}^{3}  +  {3}^{3}  +  {4}^{3}  + ...{15}^{3}  \bigg)

\rm \longrightarrow   {\bigg( \dfrac{3}{4}\bigg) }^{3}   {\bigg( \dfrac{15(15 + 1)}{2}   \bigg)}^{2}

\rm \longrightarrow   {\bigg( \dfrac{3}{4}\bigg) }^{3}   {\bigg( \dfrac{15 \times 16}{2}   \bigg)}^{2}

\rm \longrightarrow   {\bigg( \dfrac{27}{64}\bigg) } {\bigg( \dfrac{15 \times 8}{1}   \bigg)}^{2}

Sum of the series = 225k

\rm    \therefore {\bigg( \dfrac{27}{64}\bigg) } {\bigg( \dfrac{15 \times 8}{1}   \bigg)}^{2}  = 225k

\rm \longrightarrow  \dfrac{27}{64}   \times  {(15)}^{2}  \times  {(8)}^{2} = 225k

\rm \longrightarrow  \dfrac{27}{64}   \times  225  \times 64 = 225k

\rm \longrightarrow  \dfrac{27}{1}   \times  225 \times 1   = 225k

\rm \longrightarrow  \dfrac{27 \times  225}{225}     = k

\rm \longrightarrow  27     = k

Answer :- option (b)27 is correct

Answered by LivetoLearn143
7

\large\underline{\sf{Solution-}}

It is given that

 \rm \: \bigg(\dfrac{3}{4} \bigg)^{3} + \bigg(\dfrac{3}{2} \bigg)^{3} + \bigg(\dfrac{9}{4} \bigg)^{3} + \bigg(\dfrac{3}{1} \bigg)^{3} +  -  -  - 15 \: terms  = 225k

It can further written as

 \rm \: \bigg(\dfrac{3}{4} \bigg)^{3} + \bigg(\dfrac{2.3}{4} \bigg)^{3} + \bigg(\dfrac{3.3}{4} \bigg)^{3} + \bigg(\dfrac{3.4}{4} \bigg)^{3} +  -  -  - 15 \: terms  = 225k

 \rm \: \bigg(\dfrac{3}{4} \bigg)^{3}  \bigg \{1+ 2^{3} +3^{3} + 4^{3} +  -  -  - 15 \: terms  \bigg\}  = 225k

 \rm \: \bigg(\dfrac{27}{64} \bigg)  \bigg \{ {1}^{3} + 2^{3} +3^{3} + 4^{3} +  -  -  - 15 \: terms  \bigg\}  = 225k

We know from sequences,

\rm :\longmapsto\: {1}^{3} +  {2}^{3} +  {3}^{3} +  -  -  -  +  {n}^{3}  = \bigg(\dfrac{n(n + 1)}{2} \bigg)^{2}

So, on applying this identity,

 \rm \: \dfrac{27}{64} \times \bigg(\dfrac{15(15 + 1)}{2} \bigg)^{2} = 225k

 \rm \: \dfrac{27}{64} \times \bigg(\dfrac{15 \times 16}{2} \bigg)^{2} = 225k

 \rm \: \dfrac{27}{64} \times \bigg(15 \times  8 \bigg)^{2} = 225k

 \rm \: \dfrac{27}{64} \times \bigg(225 \times  64 \bigg) = 225k

\bf\implies \:k = 27

Hence,

Option (b) is correct.

Similar questions