Math, asked by haymitch14, 1 year ago

Solve :

Q.1 a+b+c = 15, a^2+b^2+c^2= 83
find a^3+b^3+c^3-3abc


Q.2 a+b+c = 8, a^2+b^2+c^2= 20
find a^3+b^3+c^3-3abc


(using a^3+b^3+c^3-3abc identity)

Please help guys...​

Answers

Answered by veerdey044
1

Answer:

Q1 ans 180  and Q2 ans -16

Step-by-step explanation:

(a+b+c)=15

(a+b+c)^2=225

ab+bc+ca = 71

i.e.

a^3+b^3+c^3-3abc

(a+b+c)(a^2+b^2+c^2-ab-bc-ca) = 180

Similar questions