Solve :
Q.1 a+b+c = 15, a^2+b^2+c^2= 83
find a^3+b^3+c^3-3abc
Q.2 a+b+c = 8, a^2+b^2+c^2= 20
find a^3+b^3+c^3-3abc
(using a^3+b^3+c^3-3abc identity)
Please help guys...
Answers
Answered by
1
Answer:
Q1 ans 180 and Q2 ans -16
Step-by-step explanation:
(a+b+c)=15
(a+b+c)^2=225
ab+bc+ca = 71
i.e.
a^3+b^3+c^3-3abc
(a+b+c)(a^2+b^2+c^2-ab-bc-ca) = 180
Similar questions