Math, asked by sohamdas207, 11 months ago

solve q.15
correct answer only​

Attachments:

Answers

Answered by zoya12515
1

Step-by-step explanation:

here is your answer and once try to solve it yourself

Attachments:
Answered by Anonymous
3

Question:

If a = {\sf{3 + 2 {\sqrt{2}} , }} find the value of {\sf{a^2 - {\dfrac{1}{a^2}} .}}

Answer:

- 24√2

Step-by-step explanation:

Given : {\sf{\ \ a = 3 + 2 {\sqrt{2}} }}

To Find : {\sf{\ \ a^2 - {\dfrac{1}{a^2}}}}

Solution :

First, we find out {\sf{ {\dfrac{1}{a}} .}}

\implies{\sf{ {\dfrac{1}{a}} = {\dfrac{1}{3 - 2 {\sqrt{2}} }} }}

  • Rationalising the denominator.

\implies{\sf{ {\dfrac{1}{a}} = {\dfrac{1}{3 - 2 {\sqrt{2}} }} \times {\dfrac{3 + 2 {\sqrt{2}} }{ 3 + 2 {\sqrt{2}}}}}}

\implies{\sf{ {\dfrac{1}{a}} = {\dfrac{3 + 2 {\sqrt{2}} }{ (3 - 2 {\sqrt{2}} )( 3 + 2 {\sqrt{2}} )}}}}

{\boxed{\tt{\bullet \ Identity \ : \ (a - b)(a + b) = a^2 - b^2}}}

{\tt{\quad Here, \ a = 3, \ b = 2 {\sqrt{2}} }}

\implies{\sf{ {\dfrac{1}{a}} = {\dfrac{3 + 2 {\sqrt{2}} }{ (3)^2 - (2 {\sqrt{2}} )^2}}}}

\implies{\sf{ {\dfrac{1}{a}} = {\dfrac{3 + 2 {\sqrt{2}} }{9 - 8}}}}

\implies{\sf{ {\dfrac{1}{a}} = 3 + 2 {\sqrt{2}} }}

_______________________________

Second, we find out a².

\implies{\sf{a^2 = (3 - 2 {\sqrt{2}} )^2 }}

{\boxed{\tt{\bullet \ Identity \ : \ (a - b)^2 = a^2 + b^2 - 2ab}}}

{\tt{\quad Here, \ a = 3, \ b = 2 {\sqrt{2}} }}

\implies{\sf{a^2 = (3)^2 + (2 {\sqrt{2}} )^2 - 2(3)(2 {\sqrt{2}} )}}

\implies{\sf{a^2 = 9 + 8 - 12 {\sqrt{2}}}}

\implies{\sf{a^2 = 17 - 12 {\sqrt{2}}}}

_______________________________

Third, we find out {\sf{ {\dfrac{1}{a^2}} .}}

\implies{\sf{ {\dfrac{1}{a^2}} = (3 + 2 {\sqrt{2}} )^2}}

{\boxed{\tt{\bullet \ Identity \ : \ (a + b)^2 = a^2 + b^2 + 2ab}}}

{\tt{\quad Here, \ a = 3, \ b = 2 {\sqrt{2}} }}

\implies{\sf{ {\dfrac{1}{a^2}} = (3)^2 + (2 {\sqrt{2}} )^2 + 2(3)(2 {\sqrt{2}} )}}

\implies{\sf{ {\dfrac{1}{a^2}} = 9 + 8 + 12 {\sqrt{2}} }}

\implies{\sf{ {\dfrac{1}{a^2}} = 17 + 12 {\sqrt{2}} }}

_______________________________

Fourth, we find out {\sf{a^2 - {\dfrac{1}{a^2}} .}}

\implies{\sf{a^2 - {\dfrac{1}{a^2}} = (17 - 12 {\sqrt{2}} ) - (17 + 12 {\sqrt{2}} )}}

\implies{\sf{a^2 - {\dfrac{1}{a^2}} = 17 - 12 {\sqrt{2}} - 17 - 12 {\sqrt{2}}}}

\implies{\sf{a^2 - {\dfrac{1}{a^2}} = - 12 {\sqrt{2}} - 12 {\sqrt{2}} }}

\implies{\boxed{\boxed{\sf{a^2 - {\dfrac{1}{a^2}} = - 24 {\sqrt{2}} }}}}

Similar questions