Math, asked by shivam923586, 1 year ago

solve Q. 25, 26, 27, 28. For 10 points
LEVEL- CLASS 11 IIT PREPARATION
DIFFERENTIATUON​

Attachments:

Answers

Answered by MaheswariS
1

Answer:

27. option (a) is correct

28. option (a) is correct

Step-by-step explanation:

27.

y=a\:e^{mx}+b\:e^{-mx}

Differentiate with respect to 'x'

\frac{dy}{dx}=a\:e^{mx}(m)+b\:e^{-mx}(-m)

Differentiate once again with respect to 'x'

\frac{d^2y}{dx^2}=a\:e^{mx}(m^2)+b\:e^{-mx}(-m)^2

\frac{d^2y}{dx^2}=a\:e^{mx}(m^2)+b\:e^{-mx}(m^2)

\frac{d^2y}{dx^2}=m^2[a\:e^{mx}+b\:e^{-mx}]

\frac{d^2y}{dx^2}=m^2y

option (a) is correct

28.

y=log[x+\sqrt{1+x^2}]

Differentiate with respect to 'x'

\frac{dy}{dx}=\frac{1}{x+\sqrt{1+x^2}}*(1+\frac{2x}{2\sqrt{1+x^2}})

\frac{dy}{dx}=\frac{1}{x+\sqrt{1+x^2}}*(1+\frac{x}{\sqrt{1+x^2}})

\frac{dy}{dx}=\frac{1}{x+\sqrt{1+x^2}}*(\frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}})

\frac{dy}{dx}=\frac{1}{\sqrt{1+x^2}}

\frac{dy}{dx}=(1+x^2)^{\frac{-1}{2}}

Differentiate once again with respect to x

\frac{d^2y}{dx^2}=\frac{-1}{2}(1+x^2)^{\frac{-3}{2}}(2x)

\frac{d^2y}{dx^2}=-(1+x^2)^{\frac{-3}{2}}(x)

\frac{d^2y}{dx^2}=-x\frac{1}{(1+x^2)^{\frac{3}{2}}}

\frac{d^2y}{dx^2}=-x\frac{1}{{1+x^2}\sqrt{1+x^2}}

(1+x^2)\frac{d^2y}{dx^2}=-x\frac{1}{\sqrt{1+x^2}}

(1+x^2)\frac{d^2y}{dx^2}=-x\frac{dy}{dx}

(1+x^2)\frac{d^2y}{dx^2}+x\frac{dy}{dx}=0

option (a) is correct

Similar questions