Solve Q.3.
chapter - Linear equations in two variables
Attachments:
Answers
Answered by
2
let 1/x be p and 1/y be
therefore equations become
ap-bq=0
and
ab^2+a^b=(a^2+b^2)
now using cross multiplication we get-
p/a^2b+b^3=q/a^3+ab^2 = 1/a^3b+ab^3
p/(a²+b²) b = q/(a²+b²)a= 1/ab(a²+b²)
on equating we get.
p= 1/ab and q=1/ab
1/x =1/ab
therefore x= ab
1/y = 1/ab
therefore y = ab.
therefore equations become
ap-bq=0
and
ab^2+a^b=(a^2+b^2)
now using cross multiplication we get-
p/a^2b+b^3=q/a^3+ab^2 = 1/a^3b+ab^3
p/(a²+b²) b = q/(a²+b²)a= 1/ab(a²+b²)
on equating we get.
p= 1/ab and q=1/ab
1/x =1/ab
therefore x= ab
1/y = 1/ab
therefore y = ab.
Answered by
4
Answer:
x = a
y = b
Step-by-step explanation:
Let 1 / x be p .
Let 1 / y be q .
a p - b q= 0 ............( 1 )
ab² p + a²b q = ( a² + b² )
⇒ ab² p+ a²b q - ( a² + b² ) = 0 ...........( 2 )
Comparing those with normal simultaneous equation :
a₁ = a
a₂ = ab²
b₁ = - b
b₂ = a²b
c₁ = 0
c₂ = - ( a² + b² )
By cross multiplication method :
x / ( b₁c₂ - b₂c₁ ) = 1 / ( a₁b₂ - a₂b₁ )
= > p / ( ( - b )(-( a² + b² )) - 0 ) = 1 / ( a ( a² b ) - ( - b )( ab² )
= > p / ( a² b+ b³ ) = 1 / ( a³ b + a b³ )
= > p / b ( a² + b² ) = 1 / ab( a² + b² )
= > p / b = 1 / ab
= > p = 1 / a
1 / x = p
So 1 / x = 1 / a
= > x = a
y / ( a₂c₁ - a₁c₂ ) = 1 / ( a₁b₂ - a₂b₁ )
= > q / ( ab² . 0 + a ( a² + b² ) )- 1 / ( a ( a² b ) - ( - b )( ab² )
= > q / a ( a² + b² ) = 1 / ( a³b + ab³ )
= > q / a ( a² + b² ) = 1 / ab ( a² + b² )
= > q / a = 1 / ab
= > q = 1 / b
1 / y = q
= > 1 / y = 1 / b
= > y = b
Similar questions