Math, asked by bhumikajindal770, 19 days ago

Solve Q 48

x = a sint - b cost

y = a cost + b sint

Prove that d^2y/dx^2 = -(x^2+y^2)/y^3

Attachments:

Answers

Answered by mathdude500
48

\large\underline{\sf{Solution-}}

Given that

\rm \: x = a \: sint -  b \: cost -  -  - (1)

and

\rm \: y = a \: cost  + b \: sint -  -  - (2)

Now, Consider

\rm \:  {x}^{2}  +  {y}^{2}

\rm \:  =  \: (asint - bcost)^{2} + (acost + bsint)^{2}

\rm \:  =  {a}^{2} {sin}^{2}t +  {b}^{2} {cos}^{2}t - 2absint \: cost \:  +  {a}^{2} {cos}^{2}t +  {b}^{2} {sin}^{2}t + 2absint \: cost

\rm \:  =  {a}^{2} {sin}^{2}t +  {b}^{2} {cos}^{2}t +  {a}^{2} {cos}^{2}t +  {b}^{2} {sin}^{2}t

\rm \:  =  {a}^{2} ({sin}^{2}t + {cos}^{2}t) +  {b}^{2} ({cos}^{2}t + {sin}^{2}t)

\rm \:  =  \:  {a}^{2} +  {b}^{2}

So, we get

\rm \:  \:  {x}^{2} +  {y}^{2}   =  \:  {a}^{2} +  {b}^{2}

On differentiating both sides w. r. t. x, we get

\rm \:  \: \dfrac{d}{dx}({x}^{2} +  {y}^{2})  =  \: \dfrac{d}{dx}( {a}^{2} +  {b}^{2} )

\rm \: 2x + 2y\dfrac{dy}{dx} = 0

\rm \: x + y\dfrac{dy}{dx} = 0

\rm \: y\dfrac{dy}{dx} =  - x

\rm \: \dfrac{dy}{dx} =  - \dfrac{x}{y}

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } =  -\dfrac{d}{dx} \dfrac{x}{y}

\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } =  - \: \bigg[\dfrac{y\dfrac{d}{dx}x - x\dfrac{d}{dx}y}{ {y}^{2} } \bigg]

\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } =  - \: \bigg[\dfrac{y - x\dfrac{dy}{dx}}{ {y}^{2} } \bigg]

can be further rewritten as using equation (1),

\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } =  - \: \bigg[\dfrac{y  + x \times \dfrac{x}{y}}{ {y}^{2} } \bigg]

\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } =  - \: \bigg[\dfrac{y  + \dfrac{ {x}^{2} }{y}}{ {y}^{2} } \bigg]

\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } =  - \: \bigg[\dfrac{ \dfrac{  {y}^{2}  + {x}^{2} }{y}}{ {y}^{2} } \bigg]

\rm\implies \:\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } =  -  \: \dfrac{ {x}^{2}  +  {y}^{2} }{ {y}^{3} }  \\

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULAE USED

\boxed{\tt{ \dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1} \: }} \\

\boxed{\tt{ \dfrac{d}{dx} \frac{u}{v} =  \frac{v\dfrac{d}{dx}u \:  -  \: u\dfrac{d}{dx}v}{ {v}^{2} }  \: }} \\

\boxed{\tt{ \dfrac{d}{dx}x \:  =  \: 1 \: }} \\

\boxed{\tt{ \dfrac{d}{dx}k \:  =  \: 0\: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by jaswasri2006
25

Refer the Given Attachments.

Attachments:
Similar questions