Math, asked by satyam9375, 11 months ago

solve q 6 and 7..........​

Attachments:

Answers

Answered by Anonymous
3

SOLUTION:6

Let r cm be the radius of the sphere.

Given, r= 4.2cm

Now,

We know that, volume of the sphere;

 =  >  \frac{4}{3} \pi {r}^{3}  \\  \\  =  > v = ( \frac{4}{3}  \times \pi \times (4.2)  \times (4.2) \times (4.2)) {cm}^{3}

Let R cm be the radius & h cm be the height at the cylinder.

So,

Volume= πr²h

=) (π × 6× 6 ×h)cm³

Therefore,

Sphere is recast into the shape of a cylinder. So, volume remains same

=) 4/3πr³ = πr² h

 =  >  \frac{4}{3}  \times \pi \times 4.2  \times 4.2 \times 4.2 = \pi \times 6 \times 6 \times h \\  \\  =  > h =  \frac{4 \times 4.2 \times 4.2 \times 4.2}{6  \times 6 \times 3}  \\  \\  =  > h =  \frac{296.35}{108}  \\  \\  =  > h = 2.74cm

SOLUTION:7

Here,

r= 21cm

& theta= 60°

We know that area of circle= πr²

 =  > ( \frac{22}{7}  \times 21 \times 21) {cm}^{2}  \\  \\  =  >( 22 \times 3 \times 21) {cm}^{2}  \\  \\  =  > 1386 {cm}^{2}

Area of (AOB);

 =  >  \frac{1}{2}  {r}^{2} sin \theta \\  \\  =  >  \frac{1}{2}  {r}^{2} sin60 \degree \\  =  >  (\frac{1}{2}  \times 21 \times 21 \times  \frac{ \sqrt{3} }{2} ) \\  \\  =  >  (\frac{21 \times 21 \times  \sqrt{3} }{4} ) \\  \\  =  >  (\frac{441 \times 1.732}{4} ) \\  \\  =  >  \frac{763.81}{4}  {cm}^{2}  \\  \\  =  > 190.95 {cm}^{2}

Now,

Area of minor segment (ACBA);

=) Area of circle - area of ∆(AOB)

=) (1386 -190.95)cm²

=) 1195.05cm²

Hope it helps ☺️

Similar questions