Math, asked by anshsss33, 1 year ago

Solve Q1



both the Parts
A part

and

B part

Attachments:

Answers

Answered by arc555
0
1.Simplyfy

a. √45 - 3√20+4√5
=9√5 - 12√5 + 4√5
=(9-12+4)√5
=(13-12)√5
= √5 Ans.

b.3√3+2√27+7/√3
=3√3+18√3+3/7√3
=(3+18+3/7)√3
=(21+3/7)√3
={(147+3)/7}√3
=(150/7)√3
Answered by DaIncredible
0
Heya !!

a)

 \sqrt{45}  - 3 \sqrt{20}  + 4 \sqrt{5}

On splitting we get,

 =  \sqrt{3 \times 3 \times 5}  - 3 \sqrt{2 \times 2 \times 5}  + 4 \sqrt{5} \\  \\  =  \sqrt{ {3}^{2} \times 5 }  - 3 \sqrt{ {2}^{2}  \times 5}  + 4 \sqrt{5}  \\  \\  = 3 \sqrt{5}  - 3 \times 2 \sqrt{5}  + 4 \sqrt{5}  \\  \\  = 3 \sqrt{5}  - 6 \sqrt{5}  + 4 \sqrt{5}  \\  \\  = 3 \sqrt{5}  + 4 \sqrt{5}  - 6 \sqrt{5}  \\  \\  = 7 \sqrt{5}  - 6 \sqrt{5}  \\  \\  =  \sqrt{5}

b)

3 \sqrt{3}  + 2 \sqrt{27}  +  \frac{7}{ \sqrt{3} }  \\

On splitting we get,

 = 3 \sqrt{3}  + 2 \sqrt{3 \times 3 \times 3}  +  \frac{7}{ \sqrt{3} }  \\  \\  = 3 \sqrt{3}  + 2 \sqrt{ {3}^{2}  \times 3}  +  \frac{7}{\sqrt{3}  }  \\  \\  = 3 \sqrt{3}  + 2 \times 3 \sqrt{3}  +  \frac{7}{ \sqrt{3} }  \\  \\  = 3 \sqrt{3}  + 6 \sqrt{3}  +  \frac{7}{ \sqrt{3} }  \\

On rationalizing the denominator we get,


 = 3 \sqrt{3}  + 6 \sqrt{3}  +  \frac{7}{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{ \sqrt{3} }  \\  \\  = 9 \sqrt{3}  +  \frac{7 \sqrt{3} }{ {( \sqrt{3}) }^{2} }  \\  \\  = 9 \sqrt{3}  +  \frac{7 \sqrt{3} }{3}  \\  \\  =  \frac{9 \sqrt{3}  \times 3 + 7 \sqrt{3} }{3}  \\  \\  =  \frac{27 \sqrt{3}  + 7 \sqrt{3} }{3}  \\  \\  =  \frac{34 \sqrt{3} }{3}

Hope this helps ☺
Similar questions