Math, asked by vaishisali2385, 3 months ago

solve quadractic equation x2-12x+32=0 using formulamethod​

Attachments:

Answers

Answered by srikanthn711
8

This has roots given by the quadratic formula:

x =    \frac{ - b \: ± \:  \sqrt{ {b}^{2} - 4ac } }{2a}  \\  =  \frac{12</p><p>± \sqrt{12 {}^{2}  - 4 \times 1 \times 32} }{2 \times 1}  \\  </p><p>=  \frac{1± \sqrt{144 - 128} }{2}  \\  </p><p>=  \frac{12± \sqrt{16} }{2}  \\ </p><p> =  \frac{12±4}{2}  \\ </p><p> =  6±2

So x=8 or x=4

Answered by TrueRider
76

Question:

solve quadractic equation x2-12x+32=0 using formula method

Solution:

x = 4 \:  \:  \:  \:  (or) \:  \:  \:  x = \: 8

Explanation:

Method 1 - Finding a pair of factors

Find a pair of factors of 32 with sum 12

The pair 4,8 works in that 4x8=32 and 4+8=12

Hence we find:

0={x}^{2}-12x+32=(x-4)(x-8)

So  \: \: x = 4  \:  \: or  \:  \: x = 8

(Or)

Method 2 - Completing the square

 0 = {x}^{2}  - 12x + 32

  \:  \:  \:  \:=  {x}^{2}  - 2(6x) + 36 - 4

  \:  \:  \:  \: = (x -  {6)}^{2}  -  {2}^{2}

  \:  \:  \:  \: = ((x - 6) - 2)((x - 6) + 2)

x = (x - 8)(x - 4)

Hence \: x = 8 \: (or) \: x = 4

Similar questions