solve quadratic equation
Answers
Answer :
(0 , 1) or (2/5 , 4/5)
Solution :
• Given : x² + y² = y , x/2 + y = 1
• To find : x , y = ?
We have ,
x² + y² = y ----(1)
Also ,
=> x/2 + y = 1
=> x/2 = 1 - y
=> x = 2(1 - y) -------(2)
Now ,
Putting x = 2(1 - y) in eq-(1) , we get ;
=> [2(1 - y)]² + y² = y
=> 4(1 - 2y + y²) + y² = y
=> 4 - 8y + 4y² + y² = y
=> 4y² + y² - 8y - y + 4 = 0
=> 5y² - 9y + 4 = 0
=> 5y² - 5y - 4y + 4 = 0
=> 5y(y - 1) - 4(y - 1) = 0
=> (y - 1)(5y - 4) = 0
=> y = 1 , 4/5
• If y = 1 , then
=> x = 2(1 - y)
=> x = 2(1 - 1)
=> x = 2•0
=> x = 0
• If y = 4/5 , then
=> x = 2(1 - y)
=> x = 2(1 - 4/5)
=> x = 2•(1/5)
=> x = 2/5
Hence ,
(0 , 1) or (2/5 , 4/5)
Given :
- x² + y² = y
- x / 2 + y = 1
Solution :
= x² + y² = y....... {1 st Equation}
= x / 2 + y = 1 ........ {2 nd Equation}
= x / 2 = 1 - y
= x = 2 ( 1 - y ) ......... {2 nd Equation}
Then, Substituting value of ' x ' in {1 st Equation} :
= x² + y² = y
= [ 2 ( 1 - y ) ]² + y² = y
= [ 4 ( 1 - 2y + y² ) ] + y² = y
= 4 - 8y + 4y² + y² = y
= 5y² - 9y + 4 = 0
= 5y² - 5y - 4y + 4 = 0
= 5y ( y - 1 ) - 4 ( y - 1 ) = 0
= ( y - 1 ) ( 5y - 4 ) = 0
= y = 1 , 4 / 5
Verifying :
When y = 1
= x = 2 ( 1 - y )
= x = 2 ( 1 - 1 )
= x = 2 ( 0 )
= x = 2
When y = 4 / 5
= x = 2 ( 1 - y )
= x = 2 ( 1 - 4 / 5 )
= x = 2 ( 1 / 5 )
= x = 2 / 5
So, ( 2 , 1 ) or ( 2 / 5 , 4 / 5 )