Math, asked by NainaMehra, 1 year ago

Solve quadratic equation by Factorization :

 \frac{1}{2a + b + 2x}  =  \frac{1}{2a}  +  \frac{1}{b}  +  \frac{1}{2x}

Answers

Answered by ShiningSilveR
6
hey mate here's ur answer

hope it helps u
Attachments:

NainaMehra: it's wrong
Answered by siddhartharao77
3

Given:\frac{1}{2a + b + 2x} = \frac{1}{2a}+\frac{1}{b}+\frac{1}{2x}

=>\frac{1}{2a + b + 2x} -\frac{1}{2x} =\frac{1}{2a}+\frac{1}{b}

=>\frac{2x - 2a - b - 2x}{2x(2a + b + 2x)} =\frac{2a + b}{2ab}

=>\frac{-2a - b}{2x(2a + b + 2x)} =\frac{2a + b}{2ab}

=> \frac{-1}{2x(2a + b + 2x)}=\frac{1}{2ab}

=> \frac{-1}{x(2a + b + 2x)}= \frac{1}{ab}

⇒ -ab = x(2a + b + 2x)

⇒ -ab = 2ax + bx + 2x^2

⇒ 2x^2 + 2ax + bx + ab = 0

⇒ 2x(x + a) + b(x + a) = 0

⇒ (x + a)(2x + b) = 0

x = -a, -b/2.


Hope it helps!

Similar questions