Math, asked by NainaMehra, 1 year ago

Solve quadratic equation :

 \frac{x + 3}{x - 2} - \frac{1 - x}{x} = 4 \frac{1}{4}


, x # 2 , 0

Answers

Answered by Anonymous
20
HEY THERE!!!


Question;-

Solve quadratic equation :

 \frac{x + 3}{x - 2} - \frac{1 - x}{x} = 4 \frac{1}{4}

, x # 2 , 0

Method of Solution;-

 \frac{x + 3}{x - 2} - \frac{1 - x}{x} = 4 \frac{1}{4} \\  \\  \\  \frac{x(x + 3) - (x - 2)(1 - x)}{(x - 2)(x)} =  \frac{17}{4}   \\  \\  \\  \frac{ {x}^{2} + 3x -  \: (x -  {x}^{2}  - 2 + 2x) }{ {x}^{2} - 2x }  =  \frac{17}{4}  \\  \\  \frac{ {x}^{2} + 3x -  \: (3x -  {x}^{2}  - 2 ) }{ {x}^{2} - 2x } \\  \\  \\   \frac{ {x}^{2}  + 3x - 3x +  {x}^{2}  + 2}{ {x}^{2} - 2x }  \\  \\  \\  \\  \frac{ {2x}^{2} + 2 }{ {x}^{2}  - 2x}  =  \frac{17}{4}  \\  \\  \\ 4( {2x}^{2}   + 2) = 17( {x}^{2}  - 2x) \\  \\  {8x}^{2}  + 8 =  {17x}^{2}  - 34x \\  \\  \\ {17x}^{2}  - 34x  -  {8x }^{2}  = 8 \\  \\  \\  {9x}^{2}  - 34x = 8 \\  \\  \\  {9x}^{2}  - 34x - 8 = 0 \\  \\  \\ {9x}^{2}  - 36x + 2x - 8 = 0  \\  \\ 9x(x - 4) + 2(x - 4) = 0 \\  \\ (9x + 2)(x - 4) = 0 \\  \\  \\ 9x + 2 = 0 \\  \\ 9x =  - 2 \\  \\ x =  \frac{ - 2}{9}  \\  \\ \mathsf{ other \: roots \: for \: the \: quardratic \: equation} \\  \\ x - 4 = 0 \\  \\ x = 4


Hence,
 \frac{x + 3}{x - 2} - \frac{1 - x}{x} = 4 \frac{1}{4} roots are -2/9 and 4.

AnjaliRoy00: Awesome
Anonymous: Thank You Sister @sakshimaan
Anonymous: Thank you so much Anjali
amanmeena0000: plz solve my question
Anonymous: Okay
Answered by abhi569
18

Given equation : \dfrac{x+3}{x-2}+\dfrac{1-x}{x} = 4\dfrac{1}{4}


\mathsf{\implies \bigg\{\dfrac{x+3}{x-2} \times \dfrac{x}{x} \bigg\} - \bigg\{ \dfrac{1-x}{x} \times\dfrac{x-2}{x-2} \bigg\} = \dfrac{17}{4}}


\mathsf{ \implies \dfrac{x(x + 3 ) }{x( x - 2 ) } - \dfrac{( 1-x)(x-2)}{x(x-2)}= \dfrac{17}{4} }


\mathsf{\implies \dfrac{x^2 + 3x - \{1(x-2) - x(x-2)\} }{x^2-2x} =\dfrac{17}{4}} \\ \\ \\ \mathsf{\implies\dfrac{x^2 + 3x - \{x-2-x^2+2x\}}{x^2-2x} =\dfrac{17}{4}} \\\\\\\mathsf{\implies\dfrac{x^2+3x-\{-x^2+3x-2\}}{x^2-2x}=\dfrac{17}{4} }\\\\\\\mathsf{\implies\dfrac{x^2+3x+x^2-3x+2}{x^2-2x}=\dfrac{17}{4}}


\mathsf{\implies \dfrac{2x^2+2}{x^2-2x}=\dfrac{17}{4} }\\\\\\\mathsf{\implies8x^2 + 8 = 17x^2-34x}\\\\\\\mathsf{\implies17x^2-8x^2-34x-8 = 0 }\\\\\\\mathsf{\implies 9x^2 - 34x -8=0}\\\\\\\mathsf{\implies 9x^2-(36-2)x- 8 = 0 }


⇒ 9x^2 - 36x + 2x - 8 = 0

⇒ 9x( x - 4 ) + 2( x - 4 ) = 0

⇒ ( x - 4 )( 9x + 2 ) = 0

⇒ x = 4 or x = - 2 / 9




abhi569: :-)
AnjaliRoy00: calculative question...Btw nice way of presentation
abhi569: :-)
vivek4621: solve quadratic equation
abhi569: thanks @sakshi
Similar questions