Math, asked by rohanspatil, 1 month ago

Solve Quadratic : x/3+3/(6-x)=2(6+x)/15​

Answers

Answered by ripinpeace
18

Answer:

 \normalsize  x = 9 \:  \:  \: \:  \:   , \:   \:  \: x = 1

Step-by-step explanation:

→\Large\frac{x}{3}  +  \frac{3}{6 - x}  =  \frac{2(6 + x)}{15}

→ \Large \frac{x(6 - x ) + 3 \times 3}{3(6 - x)} =  \frac{12 + 2x}{15}

→ \Large \frac{6x -  {x}^{2} + 9 }{18 - 3x}  =  \frac{12 + 2x}{15}

→ \normalsize( { - x}^{2}  + 6x + 9)15 = (2x + 12)(18 - 3x)

→ \normalsize  - 15 {x}^{2}  + 90x + 135 = 36 x - 6 {x}^{2}  + 216 - 36x

→\normalsize - 15 {x}^{2}  + 90x + 135 =  - 6 {x}^{2}  + 216

→ \normalsize  - 15 {x}^{2}  + 90x + 135  + 6 {x}^{2}  - 216 = 0

→ \normalsize - 9 {x}^{2}  +  90x - 81 = 0

→\normalsize - 9( {x}^{2}  - 10x + 9) = 0

→ \normalsize {x}^{2}  - 10x + 9 =  \frac{0}{ - 9}

→\normalsize  {x}^{2}  - 10x + 9 = 0

→\normalsize  {x}^{2}  - x - 9x + 9 = 0

→\normalsize  x(x  - 1) - 9(x  - 1) = 0

→\normalsize  (x - 9)(x  - 1) = 0

→ \large \bf \green{ \boxed { x = 9 \:  \:  \: \:  \:   , \:   \:  \: x = 1}}

Similar questions