Math, asked by sue10, 1 year ago

solve quartic equation 3x2 +√21x -14=0, by completing square method

Answers

Answered by Zaransha
0

3 {x}^{2}  +  \sqrt{21}x - 14 = 0 \\  3 {x}^{2} +  \sqrt{21}  x = 14 \\ 3 {x}^{2}  + (2)(  \frac{ \sqrt{3} }{2} )( \sqrt{7} x) = 14 \\ ( \sqrt{3}x)  {}^{2}  + (2) \frac{( \sqrt{3})}{2} ( \sqrt{7} x) +  { (\sqrt{7}) }^{2}  = 14 + 7 \\  \\  {( \sqrt{3}x +  \sqrt{7} ) }^{2}  = 21 \\   \sqrt{ 3}x  +  \sqrt{7}  =  +  \sqrt{21}  \: or  \:   -  \sqrt{21}  \\

For positive one,

 \sqrt{3} x =  \sqrt{21}  -  \sqrt{7}  \\  \\ x =  \frac{ \sqrt{21} -  \sqrt{7}  }{ \sqrt{3} }
Rationalizing the denominator,

x =  \frac{3 \sqrt{7} -  \sqrt{21}  }{3}

Similarly,

for the -ve part,

 \sqrt{3} x +  \sqrt{7}  =  -  \sqrt{21}  \\ x =  - ( \frac{3 \sqrt{7}  +  \sqrt{21}) }{3}
Similar questions