Math, asked by fgij3568, 1 year ago

solve qudrtic equation for x :
x {}^{2}  + ( \frac{a}{a + b}  +  \frac{a + b}{a} )x + 1 = 0

Answers

Answered by Anonymous
12

HeYa❤️...

Answer:

x {}^{2}  +  \frac{a}{a + b} x +  \frac{a + b}{a} x + 1 = 0 \\  \\ x(x +  \frac{a}{a + b} ) +  \frac{a + b}{a} (x +  \frac{a}{a + b}  = 0 \\  \\ (x +  \frac{a}{a + b} )(x +  \frac{a + b}{a} ) = 0 \\  \\ x =  \frac{ - a}{a + b}  \: or \:  \frac{ - (a + b)}{a}

I hOpe It HeLpS Ya!

✌️✌️✌️✌️

Answered by itzNarUto
2

Answer:

 \implies \sf{x}^{2} + \bigg(\dfrac{a}{a + b} + \dfrac{a + b}{a}\bigg)x + 1 = 0

\begin{lgathered} \implies\sf{x}^{2} + \frac{a}{a + b} x + \frac{a + b}{a} x + 1 = 0\\ \\ \implies\sf x\bigg(x + \frac{a}{a + b} \bigg) + \frac{a + b}{a} \bigg(x + \frac{a}{a + b}\bigg)= 0\\ \\ \implies\sf\bigg(x + \frac{a}{a + b}\bigg)\bigg(x + \frac{a + b}{a}\bigg) = 0 \\ \\ \implies \boxed{\sf x = \frac{ - a}{a + b} \: \: or \:  \:\frac{ - (a + b)}{a}}\end{lgathered}

Similar questions