Math, asked by ItzShrestha41, 1 month ago

Solve Que no.24 ASAP!! :)​

Attachments:

Answers

Answered by BeautifullMind
123

 \frac{m}{n} x {}^{2}  +  \frac{n}{m}  = 1 - 2x \\   \\ \implies \: m {}^{2}x² +n²  = mn  - 2mnx  \\ \\ \implies m ²x²+2mnx+n² −mn=0 \\  \\

Here, a = m², b = 2mn, c = n²- mn

➯ By using the Quadratic Formula Or Shri Dharacharya Formula we have

</p><p> \Large x = \frac{ - b  \: \pm \:  \sqrt{b {}^{2} - 4ac } }{2a} \\  \\  \implies x=  \frac{ -2mn  \: \pm \:  \sqrt{(2mn){}^{2} - 4(m²)(n²-mn)} }{2m²}  \\  \\ \implies</p><p>x=  \frac{ -2mn  \: \pm \:  \sqrt{4m²n² - 4m²n²+4m {}^{3} n} }{2a}  \\  \\  \implies x=  \frac{ -2mn  \: \pm \:  2m\sqrt{mn} }{2m²}  \\  \\  \implies x=  \frac{ - n \: \pm \sqrt{mn} }{m} </p><p></p><p></p><p>

Answered by Anonymous
30

Step-by-step explanation:

The problem is about finding the values of x (that is factorisation). In order to solve this problem, firstly we have to change the given equation in the form of quadratic equation. General form of quadratic equation is \tt a{x}^{2}  + bx  + c = 0. We will solve this question by applying quadratic formula.

So let's proceed by simplifying the equation!

 \tt{:  \implies \dfrac{m}{n} x^{2}  +  \dfrac{ n}{m}  = 1 - 2x}

Taking LCM

 \tt{:  \implies \dfrac{m ^{2} {x}^{2} +  {n}^{2}   }{mn} = 1 - 2x}

 \tt{:  \implies m ^{2} {x}^{2} +  {n}^{2} =mn( 1 - 2x)}

 \tt{:  \implies m ^{2} {x}^{2} +  {n}^{2} =mn- 2mnx}

 \tt{:  \implies m ^{2} {x}^{2} + 2mnx +  ({n}^{2} - mn) = 0 }

Now we can see that this equation is in the general form of a quadratic equation where \tt a  =  {m}^{2} ,  \tt b = 2mn and \tt c = (n^{2}-mn).

Now we have quadratic formula :-

 \boxed{  \tt \purple{ :   \implies x =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} }}

Substitute the values of a, b and c

   \tt{:   \implies x =  \dfrac{ - (2mn) \pm \sqrt{ {(2mn)}^{2} - 4( {m}^{2} )( {n}^{2} - mn ) } }{2a}}

   \tt{:   \implies x =  \dfrac{ - 2mn \pm \sqrt{ {4m^{2} n^{2} } - 4( {m}^{2} )( {n}^{2} - mn ) } }{2 {m}^{2} }}

   \tt{:   \implies x =  \dfrac{ - 2mn \pm \sqrt{ {4m^{2} n^{2} } - 4( {m}^{2} )( {n}^{2} - mn ) } }{2 {m}^{2} }}

  \tt{:   \implies x =  \dfrac{ - 2mn \pm \sqrt{ {4m^{2} n^{2} } -4 {m}^{2} {n}^{2}   + 4 {m}^{3}n  } }{2 {m}^{2} }}

  \tt{:   \implies x =  \dfrac{ - 2mn \pm \sqrt{ 4 {m}^{3}n  } }{2 {m}^{2} }}

  \tt{:   \implies x =  \dfrac{ - 2mn \pm 2m\sqrt{ mn  } }{2 {m}^{2} }}

‎ ‎ ‎

For negative :-

  \tt{:   \implies x =  \dfrac{ - 2mn  - 2m\sqrt{ mn  } }{2 {m}^{2} }}

  \tt{:   \implies x =  \dfrac{ - 2m(n   + \sqrt{ mn  }) }{2 {m}^{2} }}

  \pink{\boxed{  \tt{:   \implies x =  \dfrac{  -  \sqrt{  mn  } - n}{m }}}}

‎ ‎ ‎

For positive :-

  \tt{:   \implies x =  \dfrac{ - 2mn   + 2m\sqrt{ mn  } }{2 {m}^{2} }}

  \tt{:   \implies x =  \dfrac{ - 2m(n    - \sqrt{ mn  } )}{2 {m}^{2} }}

 \green{  \boxed{ \tt{:   \implies x =  \dfrac{  \sqrt{ mn  } - n }{m }} }}

These are the required answers.

Similar questions