Math, asked by bhumikajindal770, 1 day ago

Solve ques no 6

Show that lim x to 1 (x+x^2+x^3+—-x^n)/(x-1) = n(n+1)/2

Attachments:

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Consider

\displaystyle\lim_{x \to 1}\rm  \frac{(x +  {x}^{2} +  {x}^{3}   +  -  -  -  {x}^{n})  - n}{x - 1}

If we substitute directly x = 1, we get

\rm \:  =  \: \dfrac{ \underbrace{1 + 1 + 1 +  -  -  -  + 1} - n}{1 - 1}

\rm \:  =  \: \dfrac{n - n}{0}

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form.

So, Consider again

\displaystyle\lim_{x \to 1}\rm  \frac{(x +  {x}^{2} +  {x}^{3}   +  -  -  -  {x}^{n})  - n}{x - 1}

Now,

n can be rewritten as

\rm \: n =  \underbrace{1 + 1 + 1 +  -  -  -  + 1} \\  \rm \:  \:  \:  \:  \:  \:  \:  \: n \: times

So, above expression can be rewritten as

\rm \:  =  \: \displaystyle\lim_{x \to 1}\rm  \frac{(x +  {x}^{2} +  {x}^{3}   +  -  -  -  {x}^{n})  - (1 + 1 + 1 +  -  -  + 1)}{x - 1}

\rm \:  =  \: \displaystyle\lim_{x \to 1}\rm  \frac{(x - 1) +  ({x}^{2} - 1) +({x}^{3} - 1)+  -  -  -  ({x}^{n} - 1)}{x - 1}

can be further rewritten as

\rm \:  =  \: \displaystyle\lim_{x \to 1}\rm  \frac{x - 1}{x - 1} + \displaystyle\lim_{x \to 1}\rm  \frac{ {x}^{2}  - 1}{x - 1} + \displaystyle\lim_{x \to 1}\rm  \frac{ {x}^{3}  - 1}{x - 1} +  -  -  -  + \displaystyle\lim_{x \to 1}\rm  \frac{ {x}^{n}  - 1}{x - 1}

can be rewritten as

\rm \:  =  \: 1 + \displaystyle\lim_{x \to 1}\rm  \frac{ {x}^{2}  -  {1}^{2} }{x - 1} + \displaystyle\lim_{x \to 1}\rm  \frac{ {x}^{3}  -  {1}^{3} }{x - 1} +  -  -  -  + \displaystyle\lim_{x \to 1}\rm  \frac{ {x}^{n}  -  {1}^{n} }{x - 1}

We know,

\boxed{\tt{  \:  \: \displaystyle\lim_{x \to a}\rm  \:  \frac{ {x}^{n}  -  {a}^{n} }{x - a} \:  =  \:  {na}^{n - 1} \: }} \\

So, using this result, we get

\rm \:  =  \: 1 + 2 {(1)}^{2 - 1} + 3 {(1)}^{3 - 1} +  -  -  -  +  n{(1)}^{n - 1}

\rm \:  =  \: 1 + 2 + 3 +  -  -  -  -  + n

\rm \:  =  \: \dfrac{n(n + 1)}{2} \\

Hence,

\boxed{\tt{ \displaystyle\lim_{x \to 1}\rm  \frac{(x +  {x}^{2} +  {x}^{3}   +  -  -  -  {x}^{n})  - n}{x - 1} =  \frac{n(n + 1)}{2} }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1 \: \:  }} \\

\boxed{\tt{  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1 \: \:  }} \\

\boxed{\tt{  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1 \: \:  }} \\

\boxed{\tt{  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1 \: \:  }} \\

\boxed{\tt{  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga \: \:  }} \\

Answered by jaswasri2006
4

Now, Let us consider.

  \rm \lim_{(x \to1)} \frac{(x +  {x}^{2}  +  {x}^{3} +  -  -  -   {x}^{n}   ) - n}{x - 1}

If we substitute x = 1 directly, we obtain.

 \rm =  \frac{1 + 1 + 1 +  -  - + 1 - n}{1 - 1}

 \rm =  \frac{0}{0}

⬟ It is in Indeterminant form.

Let us consider,

\rm \lim_{(x \to1)} \frac{(x +  {x}^{2}  +  {x}^{3} +  -  -  -   {x}^{n}   ) - n}{x - 1}

Now, n can be also rewritten as.

 \rm n =  \underbrace{1 + 1 + 1 + -  -  -  + 1} \\  \rm n  \:  \: times

so, The above Considered Expression can be rewritten as,

\rm⇒ \lim_{(x \to1)} \frac{(x +  {x}^{2}  +  {x}^{3} +  -  -  -   {x}^{n}   ) - (1 + 1 + 1 +  -  -  -  + 1)}{x - 1}

 \rm⇒\rm \lim_{(x \to1)} \frac{(x - 1) + ( {x}^{2} - 1) + ( {x}^{3}   - 1) +  -  -  -  + ( {x}^{n}  - 1)}{x - 1}

Finally, by using

 \boxed{ \boxed{ \bf  \lim_{x \to a} \:  \frac{ {x}^{n}  -  {a}^{n} }{x - a}  = n {a}^{n - 1} }}

we obtain.

 \rm⇒ 1 + 2 {(1)}^{2 - 1}  + 3 {(1)}^{3 - 1}  +  -  -  -  + n {(1)}^{n - 1}

 \rm⇒1 + 2 + 3 +  -  -  -   + n

 \rm⇒ \frac{n(n + 1)}{2}

 \orange{▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄}

 \boxed{ \boxed{ \therefore  \color{green}{\rm \lim_{(x \to1)} \frac{(x +  {x}^{2}  +  {x}^{3} +  -  -  -   {x}^{n}   ) - n}{x - 1}  =  \frac{n(n + 1)}{2} }}}

Hence, Proved

Similar questions