Math, asked by Anonymous, 2 days ago

SOLVE QUESTION 1 AND 2

Attachments:

Answers

Answered by latharamesh391
1

1st one

If 47.2506=4A+7/B+2C+5/D +6E then the value of 5A+3B+6C+D+3E is

A. 53.6003

B. 53.603

C. 153.6003

D. 213.003

Answer: Option C

2nd one

so the greatest three digit no is 999

then when we insert it the machine multiplies the number with 4

so 999*4=3996

then it subtracts 8 from the result

so 3996-8=3988

atq it adds the successor of the number inserted to the result

so the successor of 999 id 1000

so 3988+1000=4988

here you go with the answer=4988

 Approved

Answered by mathdude500
4

Question :- 1

\rm \: If \: 47.2506 = 4A +  \dfrac{7}{B}  + 2C +  \dfrac{5}{D}  + 6E \\

then find the value of 5A + 3B + 6C + D + 3E

Question :- 2

Rahul has a wonderful machine. If you put any number in that machine, it first multiply the number by 4, then subtract 8 from the result and then add the successor of the number inserted to the result. If Martin puts the greatest three digit number into the machine, what will be the result?  

\large\underline{\sf{Solution-1}}

\rm \: \: 47.2506 = 4A +  \dfrac{7}{B}  + 2C +  \dfrac{5}{D}  + 6E \\

can be rewritten in expanded form as

\rm \: 4 \times 10 + 7 \times 1 + \dfrac{2}{10}  + \dfrac{5}{100}  + \dfrac{6}{10000} =  4A +  \dfrac{7}{B}  + 2C +  \dfrac{5}{D}  + 6E \\

So, on comparing, we get

\rm \: A = 10 \\

\rm \: B = 1 \\

\rm \: C =  \frac{1}{10}  \\

\rm \: D = 100 \\

\rm \: E =  \frac{1}{10000}  \\

Now, Consider

\rm \: 5A + 3B + 6C + D + 3E \\

\rm \:  =  \: 5 \times 10 + 3 \times 1 +  \frac{6}{10}  + 100 +  \frac{3}{10000}  \\

\rm \:  =  \: 50 + 3 +  0.6 + 100 +  0.0003  \\

\rm \:  =  \: 153.6003 \\

Hence,

\red{\rm\implies \:\boxed{ \rm{ \:5A + 3B + 6C + D + 3E = 153.6003 \: }}} \\

So, option ( C ) is correct.

\large\underline{\sf{Solution-2}}

Given that,

Rahul has a wonderful machine. If you put any number in that machine, it first multiply the number by 4 then subtract 8 from the result and then add the successor of the number inserted to the result.

Martin puts the greatest three digit number into the machine.

We know, Largest three digit number is 999

So, According to statement,

\rm \: 999 \times 4 \red{ - 8} \pink{ + 1000}

\rm \:  =  \: 3996 \red{ - 8} \pink{ + 1000}

\rm \:  =  \: 3988 \pink{ + 1000}

\rm \:  =  \: 4988

So, option ( A ) is correct.

Similar questions