Math, asked by babijev711, 11 months ago

solve question 2 in the attachment​

Attachments:

Answers

Answered by kaushik05
34

Solution:

Given:

 \int \:  \frac{ \cos \: x  -  \sin \: x + 1 - x}{ {e}^{x} +  \sin \: x + x } dx =  log(f(x))  + g(x) + c \\

where C is constant.

To find :

• F[x] and • g[x]

Answer :

 \int \:  \frac{ \cos \: x -  \sin \: x \:  + 1 - x}{ {e}^{x}  +  \sin \: x \:  + x} dx \\

In numerator , add e^x and minus e^x , we get:

 \implies \:  \int \:  \frac{ \cos \: x -  \sin \: x + 1 - x +  {e}^{x} -  {e}^{x}  }{ {e}^{x} +  \sin \: x + x } dx \\  \\  \implies \int \:  \frac{( {e}^{x}  +  \cos \: x \:  + 1) - ( {e}^{x} +  \sin \: x + x) }{ {e}^{x}  +  \sin \: x + x} dx \\  \\  \implies \int \:  \frac{ {e}^{x}  +  \cos \: x + 1}{ {e}^{x} +  \sin \: x + x } dx -  \int \:  \cancel{ \frac{ {e}^{x}  +  \sin \: x + x }{ {e}^{x} \:  +  \sin \: x + x } }dx \\  \\  \implies \int  \frac{ {e}^{x} +  \cos \: x + 1 }{ {e}^{x} +  \sin \: x + x } dx -  \int \: dx

Here , we use substitution method for 1st integral:

=> Let e^x + sin x+ x= t

Differentiate both sides , w.r.t x

=> (e^x+cos x +1 ) dx = dt .

 \implies \:  \int \:  \frac{dt}{t}  -  \int \: dx \\  \\  \implies \:  \:  log(t)  - x + c \\  \\  \implies \:  log( {e}^{x} +  \sin \: x \:   \:  + x)  - x + c

By comparing with :

Log (f(x))+g(x)+c

we get ,

• f(x) = e^x+ sin x+ x

• g(x) = -x

Attachments:
Answered by parry8016
4

Step-by-step explanation:

HERE IS U R ANSWER DEAR PLZ FOLLW ME

Attachments:
Similar questions