Math, asked by Sachinyadaav200300, 1 year ago

Solve question 30 fast

Attachments:

Answers

Answered by Avengers00
6
☺️☺️☺️
________________________________________

\underline{\huge{\textbf{Solution}}}:

Given,

For a conical bucket,

Height of bucket h= 32\: cm

Radius of lower base of bucket r= 16\: cm

Radius of upper base of bucket R = 40\: cm

Capacity of the bucket = ?

Total Surface Area of the Bucket = ?

\underline{\large{\textbf{Step-1}}}:
Find the Capacity (Volume) of the Bucket

Shape of the Bucket = Shape of the frustum of a Cone

Volume of the bucket = Volume of the frustum of the cone

Volume of the bucket\: V = \frac{1}{3}\, \pi h \, [R^{2}+r^{2}+Rr]

\implies V = \frac{1}{3}\times \frac{22}{7} \times 32 \times [40^{2}+16^{2}+(40 \times 16]

\implies V = \frac{1}{3}\times \frac{22}{7} \times 32 \times [1600+256+(640)]

\implies V = \frac{1}{3}\times \frac{22}{7} \times 32 \times[2496]

\implies V = \frac{704}{21} \times [2496]

\implies V = 83675\: cm^{3}

Therefore,
Capacity of the bucket = 83675\: cm^{3}

\underline{\large{\textbf{Step-2}}}:
Find the slant height of frustum of the conical bucket (s)

Slant\: height\: s = \sqrt{(R-r)^{2}+h^{2}}

\implies s = \sqrt{(40-16)^{2}+32^{2}}

\implies s = \sqrt{(24)^{2}+32^{2}}

\implies s = \sqrt{(576+1024}

\implies s = \sqrt{(576+1024}

\implies s = \sqrt{1600}

\implies s = 40\: cm

Slant height s = 40 cm

\underline{\large{\textbf{Step-3}}}:
Find the Total Surface Area of the bucket.

Total Surface Area of Bucket = Total Surface Area of Frustum of Cone

Total\: surface\: Area = \pi[R^{2}+r^{2}+(R+r)l]

\implies TSA= \pi[40^{2}+16^{2}+(40+16)40]

\implies TSA= \pi[1600+256+(56×40)]

\implies TSA = \pi(1856+2240)

\implies TSA = \pi(4096)

\implies TSA = \frac{22}{7}(4096)

\implies TSA = 12873\: cm^{3}

Therefore,
Total Surface Area of the Bucket = 12873\: cm^{3}

________________________________________
Attachments:
Similar questions