Math, asked by Anonymous, 1 day ago

Solve question given in image​

Attachments:

Answers

Answered by vedanshugatade
2

please mark me as BRAINLIEST

pls

pls

pls

Attachments:
Answered by Anonymous
7

Answer:

Option (C) is correct

Step-by-step explanation:

We are given the complex number,

{ \longrightarrow z = \dfrac{(1+i\sqrt3)(\cos\theta+i\sin\theta)}{2(1-i)(\cos\theta-i\sin\theta)}}

We have to find the modulus of this complex number.

We know that modulus of complex number say x + iy is given by,

 \bullet \:  \:  \:  |z|  =  \sqrt{ {x}^{2} +  {y}^{2}  }

Also, the modulus can be distributed over the complex terms.

So,

{ \longrightarrow  |z| = \dfrac{ | 1+i\sqrt3 || \cos\theta+i\sin\theta | }{2 | 1-i || \cos\theta-i\sin\theta  | }}

{ \longrightarrow  |z| = \dfrac{ \sqrt{ {1}^{2} +  { \sqrt{3} }^{2}  }  \times  \sqrt{( \cos \theta)^{2} + ( \sin \theta)^{2}  }  }{2  \times  \sqrt{ {1}^{2} +  { (- 1)}^{2}}  \times  \sqrt{( \cos \theta)^{2} + ( \sin \theta)^{2}  }}}

{ \longrightarrow  |z| = \dfrac{ \sqrt{1 + 3 }  \times  \sqrt{ \cos^{2}  \theta + \sin ^{2} \theta }  }{2  \times  \sqrt{ 1 + 1}  \times  \sqrt{ \cos ^{2}  \theta +  \sin^{2} \theta  }}}

{ \longrightarrow  |z| = \dfrac{ \sqrt{4 }  \times  \sqrt{ \cos^{2}  \theta + \sin ^{2} \theta }  }{2  \times  \sqrt{2}  \times  \sqrt{ \cos ^{2}  \theta +  \sin^{2} \theta  }}}

{ \longrightarrow  |z| = \dfrac{ \sqrt{4 }  }{2  \times  \sqrt{2} }}

{ \longrightarrow  |z| = \dfrac{ 2}{2  \times  \sqrt{2} }}

{ \longrightarrow  |z| = \dfrac{1}{ \sqrt{2} }}

Hence option (c) is correct.

Similar questions