Math, asked by sujatakumaridolly, 1 year ago

Solve question no. 11 by completing the square method.

Attachments:

Answers

Answered by Anonymous
7

Question :-

Solve the equation ( 2/x² ) - ( 5/x ) + 2 = 0 by completing square method.

Solution :-

 \sf \dfrac{2}{ {x}^{2} }  -  \dfrac{5}{x}  + 2 = 0 \\  \\

Taking LCM

 \implies \sf \dfrac{2 - 5(x) + 2( {x}^{2} )}{ {x}^{2} }= 0 \\  \\  \\

 \implies \sf \dfrac{2 - 5x+ 2 {x}^{2} }{ {x}^{2} }= 0 \\  \\  \\

  \implies \sf 2 - 5x+ 2 {x}^{2}   = 0( {x}^{2})  \\  \\  \\

  \implies \sf 2 - 5x+ 2 {x}^{2}   = 0  \\  \\  \\

 \implies \sf 2 {x}^{2}  - 5x+ 2  = 0  \\  \\  \\

  \implies \sf 2 {x}^{2}  - 5x =  - 2 \\  \\

Dividing throuout by '2'

 \implies \sf  \dfrac{2 {x}^{2} }{2}   -  \dfrac{5x}{2}  =  -  \dfrac{2}{2}  \\  \\  \\

 \implies  \sf {x}^{2}    -  \dfrac{5x}{2}  =  -  1  \\  \\  \\

 \implies \sf  {x}^{2}    -  2(x) \bigg( \dfrac{5}{4} \bigg)   =  -  1  \\  \\

Adding ( 5/4 )² on both sides

 \implies \sf  {x}^{2}    -  2(x) \bigg( \dfrac{5}{4} \bigg) +   \bigg( \dfrac{5}{4} \bigg)^{2} =  -  1   + \bigg( \dfrac{5}{4} \bigg)^{2}  \\  \\

 \implies \sf \bigg(x -  \dfrac{5}{4} \bigg)^{2} =  -  1   +  \dfrac{ {5}^{2} }{ {4}^{2} }   \\  \\

[ Because a² - 2ab + b² = (a - b)² ]

 \implies \sf \bigg(x -  \dfrac{5}{4} \bigg)^{2} =  -  1   +  \dfrac{25}{ 16 }   \\  \\   \\

 \implies \sf \bigg(x -  \dfrac{5}{4} \bigg)^{2} =    \dfrac{ - 16 + 25}{ 16 }   \\  \\   \\

 \implies \sf \bigg(x -  \dfrac{5}{4} \bigg)^{2} =    \dfrac{9}{ 16 }   \\  \\

Taking square root on both sides

 \implies \sf x -  \dfrac{5}{4} =     \pm\sqrt{\dfrac{9}{ 16 }}   \\  \\   \\

 \implies \sf x -  \dfrac{5}{4} =     \pm \dfrac{3}{4}   \\  \\   \\

 \implies \sf x -  \dfrac{5}{4} =  \dfrac{3}{4} \  \ or \ \ x -  \dfrac{5}{4}  =   - \dfrac{3}{4}    \\  \\   \\

 \implies \sf x  =   \dfrac{3}{4}  +  \dfrac{5}{4} \  \ or \ \ x  =  -  \dfrac{3}{4}   +  \dfrac{5}{4}    \\  \\   \\

 \implies \sf x  =   \dfrac{3 + 5}{4} \  \ or \ \ x  =   \dfrac{ - 3 + 5}{4}     \\  \\   \\

 \implies \sf  x  =   \dfrac{8}{4} \  \ or \ \ x  =   \dfrac{2}{4}     \\  \\   \\

\implies \sf x  = 2 \  \ or \ \ x  =   \dfrac{1}{2}     \\  \\

Hence, 2 and 1/2 are the roots of the equation.

Answered by Sharad001
92

Question :-

Solve this quadratic by completing the square method .

  \sf{\frac{2}{ {x}^{2} }   -  \frac{5}{x}  + 2 = 0} \\

Answer :-

→ Roots are 2 and 1/2

Step - by - step explanation :-

Given equation is ,

 \rightarrow \: \sf{\red{\frac{2}{ {x}^{2} }   -  \frac{5}{x}  + 2 = 0}} \\ \:  \\  \rightarrow \sf{  \frac{2 - 5x + 2 {x}^{2} }{ {x}^{2} }  = 0} \\  \\  \rightarrow \sf{\green{ 2 {x}^{2}  - 5x + 2 = 0}}

Now ,we using completing the square method ,

 \rightarrow \sf{\red{2 {x}^{2}  - 5x + 2 = 0}} \\  \\  \sf{divided \: by \:  \: 2} \\  \\   \rightarrow \sf{\green{\frac{2 {x}^{2} }{2}  -  }\red{\frac{5x}{2}  +  \frac{2}{2}}  =  \frac{0}{2} } \\  \\  \rightarrow \sf{  {x}^{2}  -  \frac{5x}{2}  =  - 1} \\  \\ \sf{\green{ to \: making \: it \: a \: perfect \: square \:} } \\  \sf{adding \:  {  \bigg(\frac{5}{4}  \bigg)}^{2}  \: on \: both \: sides \: } \\  \\  \rightarrow \red{ \sf{  {x}^{2}  +  { \big( \frac{5}{4} \big) }^{2} }+ \green{2x \times  \frac{5}{4} } =  - 1 +  { \bigg( \frac{5}{4} \bigg) }^{2} } \\  \\  \rightarrow \red{\sf{ { \bigg(x  -   \frac{5}{4}  \bigg)}^{2} } = \green{ \frac{ - 16 + 25}{16} }} \\  \\  \rightarrow \: \pink{ \sf{ { \bigg(x  -   \frac{5}{4}  \bigg)}^{2} \: } }= \red{ \frac{9}{16} } \\  \\ \blue{  \sf{taking \:  \sqrt{ \:  \: }  \: on \: both \: sides \: } }\\  \\  \rightarrow \red{\sf{  x - \frac{5}{4}  =  -  \frac{3}{4} }\green{ \: or \:  +  \frac{3}{4} }} \\  \\  \star \:  \sf{case \: (1)} \\  \\  \implies \red{\sf{x  -   \frac{5}{4}}  = \green{ -  \frac{3}{4} } }\\  \\  \implies \sf{x =   - \frac{ 3}{4}   +  \frac{5}{4} } \\  \\  \implies \sf{ x \:  =  \frac{ 2}{4} } \\  \\  \implies \:  \boxed{ \sf{ x =   \frac{1}{2} }} \\  \\  \star \sf{case \: (2)} \\  \\  \implies \red{ \sf{ x -  \frac{5}{4}  =  \frac{3}{4} } }\\  \\  \implies \sf{ x \:  =  \frac{8}{4} } \\  \\  \implies  \boxed{\sf{x \:  = 2}}

2 and 1/2 are the roots of this equation.

________________________________

Similar questions