Math, asked by sujatakumaridolly, 11 months ago

Solve question no. 13 by completing the square method.

Attachments:

Answers

Answered by Anonymous
5

Question :-

Solve the equation x² - (√2 + 1)x + √2 = 0 by completing the square method.

Solution :-

 {x}^{2}   - ( \sqrt{2}  - 1)x +  \sqrt{2}  = 0 \\  \\  \\

 \implies {x}^{2}   - ( \sqrt{2}   +  1)x   =  - \sqrt{2}  \\  \\  \\

 \implies {x}^{2}   - 2(x) \bigg(  \dfrac{ \sqrt{2} + 1 }{2}  \bigg)   =  - \sqrt{2}  \\   \\

Adding [ (√2 + 1)/2 ]² on both sides

 \implies {x}^{2}   - 2(x) \bigg(  \dfrac{ \sqrt{2} + 1 }{2}  \bigg)  +   \bigg(  \dfrac{ \sqrt{2} + 1 }{2} \bigg)^{2}  =   - \sqrt{2}  +  \bigg(  \dfrac{ \sqrt{2} + 1 }{2} \bigg)^{2}   \\  \\  \\

 \implies    \bigg( x -  \dfrac{ \sqrt{2} + 1 }{2} \bigg)^{2}  =   - \sqrt{2}  +   \dfrac{( \sqrt{2} + 1 )^{2} }{2^{2} }   \\  \\

[ Because a² - 2ab + b² = (a - b)² ]

 \implies    \bigg( x -  \dfrac{ \sqrt{2} + 1 }{2} \bigg)^{2}  =   - \sqrt{2}  +   \dfrac{( \sqrt{2})^{2} + 2( \sqrt{2} )(1) +  {1}^{2}  }{4 }   \\  \\    \\

 \implies    \bigg( x -  \dfrac{ \sqrt{2} + 1 }{2} \bigg)^{2}  =      \dfrac{ - 4 \sqrt{2} +  ( \sqrt{2})^{2} + 2 \sqrt{2}  +  {1}^2 }{4 }   \\  \\    \\

 \implies    \bigg( x -  \dfrac{ \sqrt{2} + 1 }{2} \bigg)^{2}  =      \dfrac{  ( \sqrt{2})^{2}  -  2 (\sqrt{2})(1)  +  {1}^2 }{4 }   \\  \\    \\

 \implies    \bigg( x -  \dfrac{ \sqrt{2} + 1 }{2} \bigg)^{2}  =      \dfrac{  ( \sqrt{2} - 1) ^2 }{4 }   \\  \\

[ Because a² - 2ab + b² = (a - b)² ]

Taking square root on both sides

 \implies x -  \dfrac{ \sqrt{2} + 1 }{2}   =     \pm  \sqrt{ \dfrac{  ( \sqrt{2} - 1) ^2 }{4 }  } \\  \\   \\

 \implies x -  \dfrac{ \sqrt{2} + 1 }{2}   =   \pm \dfrac{\sqrt{2} - 1 }{2 }   \\  \\   \\

 \implies x -  \dfrac{ \sqrt{2} + 1 }{2}   =    \dfrac{\sqrt{2} - 1 }{2 }   \ \  \ \ or \ \ \ x -  \dfrac{ \sqrt{2}  + 1}{2}  =   - \dfrac{ \sqrt{2}  - 1}{2}   \\   \\

 \implies x =   \dfrac{ \sqrt{2}  -  1 }{2}    +     \dfrac{\sqrt{2}  + 1 }{2 }   \ \  \ \ or \ \ \ x  =   \dfrac{ - ( \sqrt{2}   -  1)}{2}   +  \dfrac{ \sqrt{2}   +  1}{2}   \\   \\  \\

 \implies x =   \dfrac{ \sqrt{2}  -  1 +  \sqrt{2}  + 1  }{2}      \ \  \ \ or \ \ \ x  =   \dfrac{ -  \sqrt{2}    +   1 +  \sqrt{2}  + 1}{2}      \\   \\  \\

 \implies x =   \dfrac{2 \sqrt{2}  }{2}      \ \  \ \ or \ \ \ x  =   \dfrac{ 2}{2}      \\   \\  \\

 \implies x =   \sqrt{2}    \ \  \ \ or \ \ \ x  =  1    \\   \\

Hence, √2 and 1 are the roots of the equation.

Similar questions