Math, asked by Anonymous, 9 months ago

SOLVE QUESTION NO. 15 IN THE GIVEN IMAGE.

Attachments:

Answers

Answered by Cynefin
15

━━━━━━━━━━━━━━━━━━━━

Required Answer:

✏ To Factorise:

  •  \large{ \rm{5 - (3 {a}^{2} - 2a)(6 - 3 {a}^{2}   + 2a)}}

━━━━━━━━━━━━━━━━━━━━

Solution:

The polynomial can be written as,

 \large{ \rm{ = 5 - (3 {a}^{2}  - 2a)(6 - (3 {a}^{2}  -  2a)}}

Let's consider 3a² - 2a be t

 \large{ \rm{ = 5 - t(6 - t)}} \\  \\  \large{ \rm{ = 5 - 6t +  {t}^{2} }} \\  \\  \large{ \rm{ =  {t}^{2}  - 6t + 5}}

By middle term factorisation,

 \large{ \rm{ =  {t}^{2}  - 5t - t + 5}} \\  \\  \large{ \rm{ = t(t - 5) - 1(t - 5)}} \\  \\  \large{ \rm{ = (t - 1)(t - 5)}} \\  \\  \large{ \rm{ = (3 {a}^{2}  - 2a - 1)(3 {a}^{2}  - 2a - 5)}}

This can be further factorised:

\large{ \rm{ = 3 {a}^{2}  - 2a - 1}} \\  \\  \large{ \rm{ = 3 {a}^{2}  - 3a + a - 1}} \\  \\  \large{ \rm{ = 3a(a - 1) + 1(a - 1)}} \\  \\  \large{ \rm{ = (3a + 1)(a - 1) \:  \: and}} \\  \\  \\  \large{ \rm{ = 3 {a}^{2}  - 2a - 5}} \\  \\  \large{ \rm{ = 3 {a}^{2}  - 5a + 3a - 5}} \\  \\  \large{ \rm{ = a(3a - 5) + 1(3a - 5)}} \\  \\  \large{ \rm{ = (a + 1)(3a - 5)}}

Hence, Our final value:

 \large{ \rm{ = (3a + 1)(a - 1)(a + 1)(3a - 5)}} \\  \\  \large{ \rm{ = \boxed{ \red{ \rm{ (3a + 1)(3a - 5)( {a}^{2}   - 1)}}}}} \\  \\  \large{ \therefore{ \underline{ \underline{ \green{ \rm{Hence \: solved \:  \dag}}}}}}

━━━━━━━━━━━━━━━━━━━━

Similar questions