solve question no. 23
Attachments:
Answers
Answered by
1
Answer:
A = 1 and B = ±√2 .
Explanation:
Given:
Q.23:
If the zeros of polynomial x3-3x2+x+1 are a-b a a+b find a and b
Solution:
Given polynomial is f(x) = x³ - 3x² + x + 1 .
Here a = 1 , b = -3 , c = 1 , d = 1 .
Let α = ( a - b ) , β = a and γ = ( a + b ) .
As we know,
→ α + β + γ = -b/a .
⇒ ( a - b ) + a + ( a - b ) = -(-3)/1 .
⇒ 3a = 3 .
⇒ a = 3/3 .
∴ a = 1 .
And,
→ αβ + βγ + γα = c/a .
⇒ a( a - b ) + a( a + b ) + ( a + b )( a - b ) = 1/1 .
⇒ a² - ab + a² + ab + a² - b² = 1 .
⇒ 3a² - b² = 1 .
⇒ ( 3 × 1² ) - b² = 1 . { ∵ a = 1 }
⇒ 3 - b² = 1 .
⇒ b² = 3 - 1 .
⇒ b² = 2 .
∴ b = ±√2 .
Hence, it is solved .
Similar questions
Biology,
6 months ago
Hindi,
6 months ago
Science,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago