Physics, asked by khushi111151, 11 months ago

solve question no. 23

Attachments:

Answers

Answered by Blaezii
1

Answer:

A = 1  and B = ±√2 .

Explanation:

Given:

Q.23:

If the zeros of polynomial x3-3x2+x+1 are a-b a a+b find a and b

Solution:

Given polynomial is f(x) = x³ - 3x² + x + 1 .

Here  a = 1 , b = -3 , c = 1 , d = 1 .

Let α = ( a - b ) , β = a and γ = ( a + b ) .

As we know,

→ α + β + γ = -b/a .

⇒ ( a - b ) + a + ( a - b ) = -(-3)/1 .

⇒ 3a = 3 .

⇒ a = 3/3 .

∴ a = 1 .

And,

→ αβ + βγ + γα = c/a .

⇒ a( a - b ) + a( a + b ) + ( a + b )( a - b ) = 1/1 .

⇒ a² - ab + a² + ab + a² - b² = 1 .

⇒ 3a² - b² = 1 .

⇒ ( 3 × 1² ) - b² = 1 .         { ∵ a = 1 }

⇒ 3 - b² = 1 .

⇒ b² = 3 - 1 .

⇒ b² = 2 .

∴ b = ±√2 .

Hence, it is solved .

Similar questions