Math, asked by CutieAlia1, 1 year ago

SOLVE question number 14
I want immediate and correct answer

Attachments:

Answers

Answered by Anonymous
18
hope this helps you ☺☺
Attachments:

abhi569: Absolutely w
abhi569: Right *
Anonymous: thanks bhaiya
abhi569: Bhaiya??
abhi569: (-:
Nikki57: :P Abhi, i said na, everyone feel you are 'bhaiya', well Good answer!
abhi569: (-:
Answered by siddhartharao77
26
Given :  f(x) = x^3 - 3 \sqrt{5} x^2 + 13x - 3 \sqrt{5}

Given : g(x) = x -  \sqrt{5}

Given that g(x) is a factor of p(x).

x^3 -  \sqrt{5} x^2 - 2 \sqrt{5} x^2 + 10x + 3x - 3 \sqrt{5} = 0

(x -  \sqrt{5})x^2 - (x -  \sqrt{5} )2 \sqrt{5} x + (x -  \sqrt{5} ) * 3 = 0

(x -  \sqrt{5} )(x^2 - 2 \sqrt{5} x + 3) = 0

(1)

x -  \sqrt{5} = 0

x =  \sqrt{5}


(2)

x^2 - 2 \sqrt{5} + 3 = 0

Using roots of quadratic equation, we get

a = 1, b = 2 \sqrt{5} , c = 3


(i)

x =  \frac{-b +  \sqrt{b^2 - 4ac} }{2a}

          =  \frac{-b +  \sqrt{(2 \sqrt{5})^2 - 4 * 1 * 3 } }{2 * 1}

           \frac{-(-2  \sqrt{5})  +  \sqrt{20 - 12} }{2}

           \frac{2 \sqrt{5} +  \sqrt{8}  }{2}

           \frac{2( \sqrt{2} +  \sqrt{5})  }{2}

           \sqrt{2} +  \sqrt{5}



(ii)

x =  \frac{-b- \sqrt{b^2 - 4ac} }{2a}

          =  \frac{-(2 \sqrt{5}) -  \sqrt{20-12}  }{2}

          =  \frac{2 \sqrt{5} -  \sqrt{8}  }{2}

           = \frac{2 \sqrt{5} - 2 \sqrt{2}  }{2}

           \frac{2( \sqrt{5} -  \sqrt{2} ) }{2}

           \sqrt{5} -  \sqrt{2}



Therefore the zeroes of the polynomial are:

 \sqrt{5} ,  \sqrt{5} +  \sqrt{2} ,  \sqrt{5} -  \sqrt{2}



Hope this helps!

abhi569: Thanks for your answer bhai
siddhartharao77: Welcome bro
Swarup1998: Thanks for this answer, sir! Nice explanations!
siddhartharao77: Thanks Sir!
Nikki57: Just perfect!
siddhartharao77: Thanks nikki57
manavjaison: well answered bro
siddhartharao77: Thank You :-)
Similar questions