Math, asked by Anonymous, 14 days ago

Solve question number 160​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm :\longmapsto\: {4x}^{2} + 5k = (5k + 1)x

can be rewritten as

\rm :\longmapsto\: {4x}^{2} - (5k + 1)x + 5k = 0

Let assume that,

\rm :\longmapsto\: \alpha , \beta  \: be \: the \: roots \: of \:  {4x}^{2} - (5k + 1)x + 5k = 0

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm \implies\: \alpha  +  \beta  = \dfrac{5k + 1}{4}

and

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm \implies\: \alpha  \beta  = \dfrac{5k}{4}

Now, Given that

\rm :\longmapsto\: \alpha  -  \beta  = 1

\rm :\longmapsto\: {( \alpha -   \beta) }^{2}  = 1

\rm :\longmapsto\: {\alpha}^{2} +  {\beta}^{2} - 2\alpha \: \beta = 1

can be rewritten as

\rm :\longmapsto\: {\alpha}^{2} +  {\beta}^{2}  + 2\alpha \: \beta  - 4\alpha \: \beta = 1

\rm :\longmapsto\: {(\alpha + \beta)}^{2}  - 4\alpha \: \beta = 1

On substituting the values, we get

\rm :\longmapsto\: {\bigg[\dfrac{5k + 1}{4} \bigg]}^{2} - 4 \times \dfrac{5k}{4}  = 1

\rm :\longmapsto\:\dfrac{ {(5k + 1)}^{2} }{16}  - 5k = 1

\rm :\longmapsto\:\dfrac{ 25 {k}^{2} + 1 + 10k}{16}= 5k + 1

\rm :\longmapsto\:25 {k}^{2} + 1 + 10k= 80k + 16

\rm :\longmapsto\:25 {k}^{2} - 70k - 15 = 0

\rm :\longmapsto\:5 {k}^{2} - 14k - 3= 0

\rm :\longmapsto\:5 {k}^{2} - 15k + k - 3= 0

\rm :\longmapsto\:5k(k - 3) + 1(k - 3) = 0

\rm :\longmapsto\:(5k + 1)(k - 3) = 0

\bf\implies \:k =  -  \: \dfrac{1}{5}  \:  \: or \:  \: k = 3

  • Hence, option (c) is Correct.

More to know :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions