Math, asked by harsh584659494, 1 year ago

solve question number 3 and 5...pl answer it is very urgent

Attachments:

Answers

Answered by MOSFET01
6
 \red{\huge{\underline{Answer \:3}}}

 \angle AOB + \angle BOC = 180 \\ 3x+8+x-2=180°\\ 4x+6=180° \\ 4x = \frac{180\degree-6}{4}\\ x= 43.5\degree

 \angle AOB \\= 3(43.5)+8 \\= 138.5\degree

 \angle BOC \\= x-2 \\= 43.5-2\\=41.5\degree

 \pink{\huge{\underline{Answer \:5}}}

We have two parallel lines with one transversal

Now relation for all angles

 \red{\underline{\sf{By \:Vertically\: Opposite \:Angles \:Property\colon}}}

\angle 1 = \angle 3\\<br /><br />\angle 2 = \angle 4\\<br /><br />\angle 5 = \angle 7\\<br /><br />\angle 8 = \angle 6

 \red{\underline{\sf{By \:Alternate\: Interior\: Angle \:Property\colon}}}

\angle 3 = \angle 5\\<br /><br />\angle 4 = \angle 6

 \red{\underline{\sf{By \:Corresponding \:Angle \:Property\colon}}}

\angle 1 = \angle 5\\<br /><br />\angle 2 = \angle 6\\<br /><br />\angle 3 = \angle 7\\<br /><br />\angle 4 = \angle 8

MOSFET01: 5 min for next Answer
harsh584659494: and adjacent angles
MOSFET01: here i show important property
MOSFET01: here lot of angles are adjacent
MOSFET01: angle 1 and angle 2 whose sum is 180°
MOSFET01: :-)
Similar questions