Math, asked by anamikagaur927, 3 months ago

solve question number b I you can ​

Attachments:

Answers

Answered by arpitmahala76
0

Challenge Accepted!

  \frac{ {a}^{2} + 1 }{a}  = 4

 =  >  \frac{ {a}^{2} }{a}  +  \frac{1}{a}  = 4

 =  > a +  \frac{1}{a}  = 4

 =  >  {(a +  \frac{1}{a}) }^{3}  =  {4}^{3}

 =  >  {a}^{3} +  \frac{1}{ {a}^{3} } + 3a \times  \frac{1}{a}(a +  \frac{1}{a} ) = 64

 =  >  {a}^{3}  +  \frac{1}{ {a}^{3} }  + 3 \times 1 \times 4 = 64

 =  >  {a}^{3}  +  \frac{1}{ {a}^{3} }  + 12 = 64

 =  >  {a}^{3} +  \frac{1}{ {a}^{3} }   = 64 - 12 = 52

 =  > 2( {a}^{3} +  \frac{1}{ {a}^{3} } ) = 52 \times 2

 =  >  2 {a}^{3} +  \frac{2}{ {a}^{3} }   = 104

__________

HOPE IT HELPS❤️

Similar questions