Math, asked by Anonymous, 18 days ago

Solve question using parametric coordinates method

Find the length of line segment joining the vertex of the parabola y² = 4ax and a point on the parabola where the line segment makes an angle '∅' theta to the x axis.

Can anyone also explain about the concept of parametric coordinates? my teacher solved using parametric coordinate and i didn't get that. ​

Answers

Answered by mathdude500
21

\large\underline{\sf{Solution-}}

Given that,

A line segment joining the vertex of the parabola y² = 4ax and a point on the parabola, where the line segment makes an angle 'θ' to the x axis.

We know, Parametric form of y² = 4ax is x = at² , y = 2at.

Let the required point be P which lies on the parabola y² = 4ax and Let assume that coordinates of point in parametric form is P (at² , 2at)

Vertex of the parabola y² = 4ax is O(0, 0).

Now, Length of line segment OP is evaluated using distance formula as

\rm \: OP =  \sqrt{ {( {at}^{2}  - 0)}^{2} +  {(2at - 0)}^{2}  }  \\

\rm \: =  \sqrt{ {( {at}^{2})}^{2} +  {(2at)}^{2}  }  \\

\rm \: =  \sqrt{ {a}^{2}  {t}^{4}  + 4 {a}^{2}  {t}^{2} }  \\

\rm \: =  \sqrt{ {a}^{2}  {t}^{2}( {t}^{2}   + 4)}  \\

\rm \:  =  \: at \sqrt{ {t}^{2} + 4 }  \\

\rm\implies \:OP  =  \: at \sqrt{ {t}^{2} + 4 }  -  -  - (1) \\

Now, as line segment OP makes an angle θ, with positive direction of x axis.

So,

\rm \: Slope \: of \: OP \:  =  \: tan \theta \:  \\

\rm \: \dfrac{2at - 0}{ {at}^{2} - 0 }  \:  =  \: tan \theta \:  \\

\rm \: \dfrac{2at}{ {at}^{2} }  \:  =  \: tan \theta \:  \\

\rm \: \dfrac{2}{t}  \:  =  \: tan \theta \:  \\

\rm\implies \:t \:  =  \: 2 \: cot\theta \\

So, on substituting the value of t, in equation (1), we get

\rm \: OP =  \: a(2cot\theta) \sqrt{ {(2cot\theta)}^{2} + 4 }  \\

\rm \: OP =  \: 2a \: cot\theta \sqrt{ {4cot^{2} \theta} + 4 }  \\

\rm \: OP =  \: 2a \: cot\theta \sqrt{4( {cot^{2} \theta} +1)}  \\

\rm \: OP =  \: 4 \: a \: cot\theta \sqrt{{cot^{2} \theta} +1}  \\

\rm \: OP =  \: 4 \: a \: cot\theta \sqrt{{cosec^{2} \theta}}  \\

\rm\implies \:\rm \: OP =  \: 4 \: a \: cot\theta  \: cosec\theta  \\

\rule{190pt}{2pt}

Parametric form of Parabola

 \\ \begin{gathered}\boxed{\begin{array}{c|c} \bf Equation \: of \: parabola \:  & \bf Parametric \: form \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  {y}^{2} = 4ax  & \sf x =  {at}^{2}, \: y = 2at  \\ \\ \sf {y}^{2} =  - 4ax & \sf x =   - {at}^{2}, \: y = 2at \\ \\ \sf {x}^{2} = 4ay & \sf y =  {at}^{2}, \: x = 2at\\ \\ \sf {x}^{2} =  - 4ay & \sf y =   - {at}^{2}, \: x = 2at \end{array}} \\ \end{gathered} \\

Attachments:

amansharma264: Excellent
Answered by amansharma264
21

EXPLANATION.

The length of line segment joining the vertex.

Parabola : y² = 4ax.

Making a point on the parabola where the line segment makes an angle θ to the x - axis.

As we know that,

Slope of a line joining two points (x₁, y₁) and (x₂, y₂) is (y₂ - y₁)/(x₂ - x₁).

Using this formula in the equation, we get.

Slope of line OA = (y - 0)/(x - 0).

Slope of line OA = y/x.

We know that,

Slope = tanθ.

⇒ tanθ = y/x.

⇒ y = xtanθ. - - - - - (1).

Put the value of y = xtanθ in equation of parabola, we get.

⇒ (xtanθ)² = 4ax.

⇒ x² tan²θ = 4ax.

⇒ xtan²θ = 4a.

⇒ x = 4a/tan²θ.

⇒ x = 4acot²θ.

Put the value of x = 4acot²θ in equation (1), we get.

⇒ y = (4acot²θ)(tanθ).

⇒ y = (4a/tan²θ) x tanθ.

⇒ y = 4a/tanθ.

⇒ y = 4acotθ.

Value of x = 4acot²θ  and  y = 4acotθ.

As we know that,

Distance formula.

⇒ D = √(y₂ - y₁)² + (x₂ - x₁)².

Using this formula in the equation, we get.

⇒ OA = √(y - 0)² + (x - 0)².

⇒ OA = √(y)² + (x)².

Put the values in the equation, we get.

⇒ OA = √(4acotθ)² + (4acot²θ)².

⇒ OA = √16a²cot²θ + 16a²cot⁴θ.

⇒ OA = √16a²(cot²θ + cot⁴θ).

⇒ OA = √16a²cot²θ(1 + cot²θ).

As we know that,

Formula of :

⇒ 1 + cot²θ = cosec²θ.

⇒ cot²θ = cosec²θ - 1.

Put the values in the equation, we get.

⇒ OA = √16a²cot²θ[1 + cosec²θ - 1].

⇒ OA = √16a²cot²θ(cosec²θ).

⇒ OA = 4acotθcosecθ.

Line segment joining the vertex of the parabola y² = 4ax : 4acotθcosecθ.

                                                                                                                   

MORE INFORMATION.

(1) Parametric form in straight lines.

x - x₁/cosθ = y - y₁/sinθ = r.

(2) Parametric equations of a circle.

(a) The parametric equation of a circle : x² + y² = r² are x = rcosθ and y = rsinθ.

(b) The parametric equation of the circle : (x - h)² + (y - k)² = r² are x = h + rcosθ and  y = k + rsinθ.

(c) Parametric equation of the circle : x² + y² + 2gx + 2fy + c = 0 are x = - g + √(g² + f² - c) cosθ  and  y = - f + √(g² + f² - c) sinθ.

(3) Parametric equation of parabola.

y² = 4ax are x = at² , y = 2at  and for  parabola  x² = 4ay is x = 2at  and  y = at².

Attachments:
Similar questions