Math, asked by chandraakash2627, 2 months ago

Solve questions no. 6​

Attachments:

Answers

Answered by Anonymous
1

To solve :-

  \implies \dfrac{2 \sqrt{3}}{3 -  \sqrt{6} }

‎ ‎ ‎

Solution :-

We have to Rationalise the given fraction by multiplying it by the conjugate of its denominator. Conjugate of 3 - √6 is 3 + √6.

‎ ‎ ‎ ‎ ‎ ‎

  \implies \dfrac{2 \sqrt{3}}{3 -  \sqrt{6} }  \times \dfrac{3 +  \sqrt{6} }{3 +  \sqrt{6} }

‎ ‎ ‎

{  \implies \dfrac{2 \sqrt{3}( 3 +  \sqrt{6}) }{(3 -  \sqrt{6}) (3 +  \sqrt{6}) }}

‎ ‎ ‎

Solving numerator

‎ ‎ ‎

{  \implies \dfrac{6 \sqrt{3} + 2\sqrt{18} }{(3 -  \sqrt{6}) (3 +  \sqrt{6}) }}

‎ ‎ ‎

{  \implies \dfrac{6 \sqrt{3} + 2\sqrt{3 \times 3 \times 2} }{(3 -  \sqrt{6}) (3 +  \sqrt{6}) }}

‎ ‎ ‎

{  \implies \dfrac{6 \sqrt{3} + 6\sqrt{2} }{(3 -  \sqrt{6}) (3 +  \sqrt{6}) }}

‎ ‎ ‎

Apply identity in numerator (A - B) (A + B) = -

‎ ‎ ‎

{  \implies \dfrac{6 \sqrt{3} + 6\sqrt{2} }{(3 ) ^{2} -(  \sqrt{6}) ^{2}   }}

‎ ‎ ‎

{  \implies \dfrac{6 \sqrt{3} + 6\sqrt{2} }{9 - 6 }}

‎ ‎ ‎

{  \implies \dfrac{6 \sqrt{3} + 6\sqrt{2} }{3 }}

‎ ‎ ‎

Taking 6 common in numerator

‎ ‎ ‎

{  \implies \dfrac{6( \sqrt{3} +  \sqrt{2} )}{3 }}

‎ ‎ ‎

{  \implies \dfrac{ \not6( \sqrt{3} +  \sqrt{2} )}{ \not3 }}

‎ ‎ ‎

{  \implies \dfrac{2( \sqrt{3} +  \sqrt{2} )}{1 }}

‎ ‎ ‎

  \implies 2( \sqrt{3} +  \sqrt{2})

‎ ‎ ‎

This is the final answer.

Similar questions