Math, asked by khansandy444, 2 days ago

solve questions number 6 plz

Attachments:

Answers

Answered by 12thpáìn
8

The volume: V=x³. The surface: S=6x².

Given the surface is 216cm², we can find the side:

 \\ \sf ~~~\implies 6x² = 216

\sf ~~~\implies x² = 36

\sf ~~~\implies x =  \sqrt{36}

\sf ~~~\implies x =  6 \\

  • Given the volume increases at the rate 24cm³, we can find at what rate the side is increases:

\dfrac{dV}{dt}   \sf=3x^2 ×  \dfrac{dx}{dt} = 24  \implies\dfrac{dx}{dt} = \dfrac{24}{3×{6}^2 } = \dfrac{2}{9}

  • Given the volume and surface equation, we can differentiate the volume:

\sf V = s × \dfrac{x}{ 6}

 {\implies\sf  \dfrac{dV}{dt} = \dfrac{ds}{dt} \times  \dfrac{x}{ 6}  + s \times  \dfrac{1}{6}  \times\dfrac{dx}{dt}  = 24}

 { \implies\dfrac{dS}{dt}  \sf× \dfrac{6}{6} + 216 × \dfrac{1}{6} × \dfrac{2}{9} = 24}

 { \implies \bf\dfrac{dS}{dt}  =16} \\  \\

  • At 16cm²/min fast surface area increasing when the surface area is 216 cm².

Answered by Anonymous
1

\huge{\fcolorbox{purple}{pink}{\fcolorbox{yellow}{red}{\bf{\color{white}{ᴀɴsᴡᴇʀ}}}}}

The volume: V=x³. The surface: S=6x².

Given the surface is 216cm², we can find the side:

\begin{gathered}    \end{gathered} </p><p>   ⟹6x²=216 \\ </p><p>	</p><p> </p><p></p><p>\sf \implies x² = 36   \\  </p><p> </p><p></p><p>   ⟹x=6</p><p>	</p><p> </p><p>

Given the volume increases at the rate 24cm³, we can find at what rate the side is increases:

\dfrac{dV}{dt} \sf=3x^2 × \dfrac{dx}{dt} = 24  \\  \\ \implies\dfrac{dx}{dt} = \dfrac{24}{3×{6}^2 } = \dfrac{2}{9} </p><p>dt</p><p>dV</p><p>	</p><p> =3x </p><p>2</p><p> × </p><p>dt</p><p>dx</p><p>	</p><p> =24 \\ ⟹ </p><p> dt</p><p>dx</p><p>	</p><p> = </p><p>3×6 </p><p>2</p><p> </p><p>24</p><p>	</p><p> = </p><p>9</p><p>2</p><p>	</p><p> </p><p> \\ Given \:  \:  the  \:  \: volume \:  \:  and  \:  \: surface  \:  \: equation,  \:  \: we  \:  \: can \:  \:  differentiate  \:  \: the \:  \:  volume: \:  \: </p><p>\sf V = s × \dfrac{x}{ 6}V=s× </p><p>6</p><p>x</p><p>	</p><p> </p><p></p><p> \\ {\implies\sf \dfrac{dV}{dt} = \dfrac{ds}{dt} \times \dfrac{x}{ 6} + s \times \dfrac{1}{6} \times\dfrac{dx}{dt} = 24} \\  \\ ⟹ </p><p>dt</p><p>dV</p><p>	</p><p> = </p><p>dt</p><p>ds</p><p>	</p><p> × </p><p>6</p><p>x</p><p>	</p><p> +s× </p><p>6</p><p>1</p><p>	</p><p> × </p><p>dt</p><p>dx</p><p>	</p><p> =24</p><p></p><p> \\  \\ { \implies\dfrac{dS}{dt} \sf× \dfrac{6}{6} + 216 × \dfrac{1}{6} × \dfrac{2}{9} = 24} \\  \\ ⟹ </p><p>dt</p><p>dS</p><p>	</p><p> × </p><p>6</p><p>6</p><p>	</p><p> +216× </p><p>6</p><p>1</p><p>	</p><p> × </p><p>9</p><p>2</p><p>	</p><p> =24</p><p></p><p>\begin{gathered} { \implies \bf\dfrac{dS}{dt} =16} \\ \\ \end{gathered} </p><p>⟹ </p><p>dt</p><p>dS</p><p>	</p><p> =16</p><p>	</p><p> </p><p>

At 16cm²/min fast surface area increasing when the surface area is 216 cm².

Hope it's helpful to you ☺️❤️

Similar questions