Math, asked by priyadeshmukh1405198, 9 months ago

solve quick
plzzzz





solution for question ​

Attachments:

Answers

Answered by aniruddhaanturlikar
1

Answer:

Step-by-step explanation:

From the picture we have Δ COD is similar to Δ AOB.

Since,

∠COD=∠AOB (opposite angle) , OBA∠CDO=∠OBA (transversal angle)

∠DCO=∠OAB (transversal angle).

Then

CD/AB=OD/OA

or 6/20 = OD/15

or, OD=4.5

Please make me as brainliest

Answered by Anonymous
73

Given :

  • In trapezium, ABCD,
  1. Side AB \parallel Side DC
  2. Line DB is the transversal
  3. Diagonals AC and BD intersects in point O.
  • AB = 20
  • DC = 6
  • OB = 15

To Find :

  • Length of OD.

Solution :

Side AB \parallel side DC

line DB is the transversal.

\sf{\angle{CDB}} \sf{\cong}\sf{\angle{ABD}} \sf{\underbrace{Alternate\:angles\:theorem}}

\sf{\angle{CDO}} \sf{\cong}\sf{\angle{ABO\:\:\:(i)}}

➟ In \sf{\triangle{COD}} and \sf{\triangle{AOB}}

\sf{\angle{CDO}} \cong \sf{\angle{ABO}} [From (i)]

\angle{COD} \cong \angle{AOB} \sf{\underbrace{Vertically\:opposite\:angles}}

\sf{\therefore{\triangle{COD}\sim{\triangle{AOB}}}}\sf{\underbrace{AA\:test\:of\:Similarlity}}

\sf{\therefore{\dfrac{CO}{AO}}} = \sf{\dfrac{OD}{OB}} = \sf{\dfrac{DC}{AB}} \sf{\underbrace{C.S.S.T\:of\:congruent\:triangles}}

According to the question, we need to calculate OD. Therefore, consider the pairs with the given data neglecting the other ratio of remaining sides.

\sf{\dfrac{OD}{15}} = \sf{\dfrac{6}{20}}

\sf{OD\:=\:{\dfrac{15\:\times\:6}{20}}}

\sf{OD\:=\:{\dfrac{15\:\times\:3}{10}}}

\sf{OD\:=\:15\:\times\:0.3}

\sf{OD=4.5}

\sf{\therefore{\underline{Length\:of\:OD\:=\:4.5\:units}}}

Similar questions