Math, asked by scoutneoyt, 11 months ago

solve

rationalise the denominator ​

Attachments:

Answers

Answered by mishka131517
0

Answer:

root 3 /root 2

Step-by-step explanation:

When we multilpy the denominators,we get

(root6)^2-(2)^

6-4

2

Now the numerator is root 2×root 3

So root 2×root 3/2

=root3/root2

Answered by Anonymous
1

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \boxed{\boxed { \huge  \mathcal\red{\mathcal{Solution}}}}}

Given:-

  \red{ \implies}\frac{ \sqrt{2} }{ \sqrt{6} -  \sqrt{2}  }  +  \frac{ \sqrt{3} }{ \sqrt{6} +  \sqrt{2}  }  \\   \red{ \implies}  \frac{  \sqrt{2}( \sqrt{6}   +  \sqrt{2}) +  \sqrt{ 3}( \sqrt{6}  -  \sqrt{2})   }{( \sqrt{6} -  \sqrt{2})( \sqrt{6} +  \sqrt{2})    }   \\  \red{ \implies}  \frac{ \sqrt{2} \times  \sqrt{6}  +  \sqrt{2} \times  \sqrt{2}  +  \sqrt{3} \times  \sqrt{6}   -  \sqrt{2} \times  \sqrt{3}    }{( \sqrt{6}) {}^{2} - ( \sqrt{2} ) {}^{2}   }  \\   \red{ \implies} \frac{ \sqrt{12}   +  2  +  \sqrt{18}  -  \sqrt{6} }{6 - 2}  \\   \red{ \implies}  \frac{2 \sqrt{3}  + 2 + 3 \sqrt{2}  -  \sqrt{6} }{4}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

\mathcal{ \#\mathcal{answer with quality  }\:  \:  \&  \:  \: \#BAL }

Similar questions