Math, asked by miriambenny912, 11 months ago

solve root 11x+root 3y=0 root 5x-root11y=0

Answers

Answered by bhairab141
0

Answer:

let

 \sqrt{11} x +  \sqrt{3} y = 0....(i) \\  \\  \sqrt{5} x -  \sqrt{11} y = 0.....(ii)

now from equation (i)

 \sqrt{11} x =  -  \sqrt{3} y \\ x =  \frac{ -  \sqrt{3} }{ \sqrt{11} } y

 \sqrt{11} x =  -  \sqrt{3} y \\ x =  \frac{ -  \sqrt{3} }{ \sqrt{11} } y \\ x =  \frac{ -  \sqrt{3} }{ \sqrt{11} }  \times 0 \\ x = 0

putting this value of X in equation (ii)..

we got

 \sqrt{5}  \times  \frac{ -  \sqrt{3}y }{ \sqrt{11} }  -  \sqrt{11} y = 0 \\  -  \sqrt{15 } y - 11y = 0 \\ y( -  \sqrt{15}  - 11) = 0 \\ y =  \frac{0}{\sqrt{15}  - 11) }

y=0

now from eqation i

x=

 \sqrt{11} x =  -  \sqrt{3} y \\ x =  \frac{ -  \sqrt{3} }{ \sqrt{11} } y \\ x =  \frac{ -  \sqrt{3} }{ \sqrt{11} }  \times 0 \\ x = 0

Similar questions