Math, asked by Mim871, 3 months ago

solve –: root ( x-1/3x+2)+2root(3x+2/x-1)=3​

Answers

Answered by Anonymous
1140

\large\sf{\sqrt{\frac{x-1}{3x+2}}+2\sqrt{\frac{3x+2}{x-1}}}

\sf\blue{Let's\:assume\:that\:}\bf\dfrac{x-1}{3x+2}=a^2

\sf{Now,the\:equation\:is}\sf{\sqrt{a^2}+2\sqrt{\frac{1}{a^2}}=3}

\:\:\:\:\:\:\:\:\sf{\dashrightarrow\:a+\frac{2}{a}=3}

\\

\:\:\:\:\:\:\:\:\sf{\dashrightarrow\:\frac{a^2+2}{a}=3}

\\

\:\:\:\:\:\:\:\:\sf{\dashrightarrow\:a^2+2=3a}

\\

\:\:\:\:\:\:\:\:\sf{\dashrightarrow\:a^2-3a+2=0}

\\

\:\:\:\:\:\:\:\:\sf{\dashrightarrow\:a^2-2a-a+2}

\\

\:\:\:\:\:\:\:\:\sf{\dashrightarrow\:a(a-2)-1(a-2)=0}

\\

\:\:\:\:\:\:\:\:\sf{\dashrightarrow\:(a-2)(a-1)=0}

_______________________

\bf{Either, \:a - 2 = 0}

\bf{:\implies\:a=2}

\bf{Or,\:a - 1 = 0}

\bf{:⇒ a = 1}

______________________

{\mathcal{\blue{if\:a = 2\:then\:we\:get,}}}

\:\:\:\:\sf\large{\frac{x-1}{3x+2}=2^2}

\:\:\:\:\sf\large{⇒ x - 1 = 12x + 8}

\:\:\:\:\sf\large{⇒ 11 x = -9}

\:\:\:\:\sf\large{⇒ x = -\frac{9}{11}}

______________________

{\mathcal{\blue{Again\:if\:a = 1\:then\:we\:get,}}}

\:\:\:\:\sf\large{\frac{x-1}{3x+2}=1^2}

\:\:\:\:\sf\large{⇒ 3x +2 = x - 1}

\:\:\:\:\sf\large{⇒3x - x = -1-2}

\:\:\:\:\sf\large{⇒ x =-\frac{3}{2}}

______________________

 \large{ \underline{ \overline{ \mid{ \rm{ \blue{The \:value\:of\:x=-\frac{9}{11},\frac{3}{2}}} \mid}}}}

Answered by JuanitaJ
23

Answer:

3x

2

+15x+2

x

2

+5x+1

=2

3(x

2

+5x)+2

x

2

+5x+1

=2

Let x

2

+5x=t

then 3t+2

t+1

=2

4(t+1)=4+9t

2

−12t (squaring both sides)

4t+4=4+9t

2

−12t

9t

2

−16t=0

t=0

x

2

+5x=0

x=0

x=−5

t=

9

16

x

2

+5x=

9

16

9x

2

+45x−16=0

9x

2

+48x−3x−16=0

9x

2

+48x−3x−16=0

3x(3x+16)(3x+16)=0

(3x−1)(3x+16)=0

x=1/3

x=−16/3

Similar questions