Solve. root3 sin theta-cos theta= root2
Answers
Step-by-step explanation:
PLEASE...MARK...ME...AS
...... BRILLIANTLIST
We have,
→ cos θ + sin θ = √2cos θ .
[ Squaring both side, we get ] .
⇒ ( cos θ + sin θ )² = 2cos²θ .
⇒ cos²θ + sin²θ + 2cosθsinθ = 2cos² .
⇒ sin²θ + 2cosθsinθ = 2cos²θ - cos²θ .
⇒ sin²θ + 2cosθsinθ = cos²θ .
⇒ cos²θ - 2cosθsinθ = sin²θ .
[ Adding sin²θ both side, we get ] .
⇒ cos²θ - 2cosθsinθ + sin²θ = sin²θ + sin²θ .
⇒ ( cos θ - sin θ )² = 2sin²θ .
⇒ cos θ - sin θ = √( 2sin²θ ) .
∴ cos θ - sin θ = √2sin θ .
Answer:
Ф = n π + π / 6 + ( - 1 )ⁿ π / 4 where n € I
Step-by-step explanation:
Given :
√ 3 sin Ф - cos Ф = √ 2
r = √ ( √ 3 )² + 1² ) = 2
Adding whole given equation by 2 :
√ 3 / 2 sin Ф - 1 / 2 cos Ф = √ 2 / 2
sin Ф cos π / 6 - cos Ф sin π / 6 = 1 / √ 2
Using identity sin ( A - B ) = sin A cos B - cos A sin B
sin ( Ф - π / 6 ) = 1 / √ 2
We know :
sin π / 4 = 1 / √ 2
sin ( Ф - π / 6 ) = sin π / 4
On comparing we get :
Ф - π / 6 = π / 4
Ф = π / 6 + π / 4
We know :
if sin Ф = sin α
= > Ф = n π + ( - 1 )ⁿ α where n € I
So , general equation of given equation is written as :
= > Ф = n π + π / 6 + ( - 1 )ⁿ π / 4 where n € I