Math, asked by adrika30, 10 months ago

Solve Root3x^2+11x+6root3 =0 (By quadratic formula)

Answers

Answered by Anonymous
5

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

\star \: {\tt{3 {x}^{2}  + 11x + 6 \sqrt{3}  = 0}}

{\sf{\underline{\blue{Now,}}}}</p><p>

\star \: {\sf{\orange{using \: quadratic \: formula}}}</p><p></p><p>

{\sf{\blue{where \:  \implies \: a = 3,}}}</p><p>

{\sf{\blue{\implies \: b = 11,}}}</p><p>

{\sf{\blue{\implies \: c = 6 \sqrt{3} ,}}}</p><p>

{\tt{ \implies \: x =  {b}^{2} - 4ac }}

{\tt{ \implies \: x =  {(11)}^{2} - 4(3)(6 \sqrt{3})  }}

{\tt{ \implies \: x =  {121- 12(6 \sqrt{3})}}}

{\tt{ \implies \: x =  {121- 72\sqrt{3}}}}

{\tt{ \implies \: x =  {121- 124.70 &lt; 0}}}

\star \: {\sf{\underline{\blue{the \: eqaution \:has \: imaginary  \: roots}}}}</p><p>

{\bf{\red{\underline{conditions:}}}}

{\sf{\green{if \:  {b}^{2} - 4ac &gt; 0 \: then \: two \: diffrerent \: real \: roots }}}{\sf{\green{if \:  {b}^{2} - 4ac  =  0 \: then \: two \: same \: real \: roots }}} {\sf{\green{if \:  {b}^{2} - 4ac   &lt;   0 \: then \: two \: imaginary \:  roots }}}

Answered by SHAANbrainly
4

Hey friend!

To solve √3x² + 11x + 6√3 = 0 by Quadratic formula

Answer:

x = \frac{-11 \ - \ \sqrt{17} }{2} Or \frac{-11 \ + \ \sqrt{17} }{2}\\ \\

Step-by-step explanation:

According \ to \ the \ Quadratic \ Formula,\\\\We\ know\ that\\ \\if \ ax^2 + bx + c = 0\\\\then,\\\\x = \frac{- \ b \ +  \ \sqrt{D}}{2a} \ or \  \frac{- \ b \ +  \ \sqrt{D}}{2a}\\\\where \ D = b^2 - 4ac \\\\Given,\\\\ Equation \ is \ \sqrt{3} x^2 + 11x +6 \sqrt{3}\\ \star \ a = \sqrt{3}\\ \star \ b = 11\\\star \ c = 6\sqrt{3} \\\\ Either\\\implies \ x = \frac{- \ 11 \ +  \ \sqrt{11^2\ -\ 6\ *\ 4\ * \sqrt{3}\ *\ \sqrt{3} }}{2\sqrt{3} }\\\\

\implies x =  \frac{-11 \ + \ \sqrt{121\ -\ 24\ * \ 3 } }{2\sqrt{3} } \\\\\implies x = \frac{-11 \ + \ \sqrt{121 \ - \ 72} }{2\sqrt{3} } \\\\\implies  x = \frac{-11 \ + \ \sqrt{51} }{2\sqrt{3} } \\\\ \\Or \\\implies x = \frac{- \ 11 \ -  \ \sqrt{11^2\ -\ 6\ *\ 4\ *\ \sqrt{3}\ *\ \sqrt{3} }}{2\sqrt{3} }\\\\\implies x = \frac{-11 \ - \ \sqrt{121 \ - \ 72} }{2\sqrt{3} }\\ \\\implies x = \frac{-11 \ - \ \sqrt{51} }{2\sqrt{3} }\\ \\ \implies x = \frac{-11 \ - \ \sqrt{17} }{2}

I hope it helps you#QualityAnswers

Similar questions