solve sec theta minus 1 equal to root 2 minus 1 tan theta
Answers
Answered by
18
Answer:
secθ−1=(√2–1)tanθ
⇒sec²θ+1−2secθ =(2+1−2√2)tan²θ
⇒sec²θ+1−2secθ =3(sec²θ−1)−2√2(sec²θ−1)
⇒sec²θ−3sec²θ+2√2 sec²θ+1+3−2√2-2secθ=0
⇒−2sec²θ+2√2sec²θ+4−2√2−2secθ=0
⇒(2√2−2)sec²θ−2secθ+4−2√2=0
⇒(2√2−2)sec²θ−(4−2√2)secθ −(2√2−2)secθ+(4−2√2)=0
⇒(2√2−2)secθ[secθ−1]−(4−2√2)[secθ−1]=0
⇒[secθ−1][(2√2secθ−2secθ−4+2√2)]=0
⇒secθ−1=0, (2√2sec θ−2sec θ−4+2√2)=0
⇒secθ=1, sec θ(2√2−2)=4−2√2
⇒θ=0, sec θ=4−2√2/2√2−2
= 2−√2/√2-1 × √2+1/2+1
=2√2+2−2−√2
=√2
θ =sec^-1 √2 = π/4
Similar questions