Math, asked by kumaresankp21, 1 year ago

solve secx-tanx=✓3 hint (cosx does not equal to 0)​

Answers

Answered by ihrishi
1

Answer:

sec \: x - tan \: x =  \sqrt{3}  \\  \therefore \:  \frac{1}{cos \: x}  -  \frac{sin \: x}{cos \: x}  =  \sqrt{3}  \\ \therefore \:  1 - sin \: x =  \sqrt{3} cos \: x \\squaring \: both \: sides \\ (1 - sin \: x)^{2}  = ( \sqrt{3}  \: cos \: x)^{2}  \\ \therefore \:  1 +  {sin}^{2}  \: x - 2 \: sin \: x = 3 \: cos^{2}  \: x \\ \therefore \:  1 +  {sin}^{2}  \: x - 2 \: sin \: x = 3(1 -  sin^{2}  \: x) \\ \therefore \:  1 +  {sin}^{2}  \: x - 2 \: sin \: x = 3 -  3sin^{2}  \: x \\ \therefore \:  1 +  {sin}^{2}  \: x - 2 \: sin \: x  -  3  +  3sin^{2}  \: x = 0 \\ \therefore \: \ 4sin^{2}  \: x  - 2 \: sin \: x - 2  = 0 \\  \therefore \: \ 4sin^{2}  \: x  - 4\: sin \: x + 2 \: sin \: x- 2  = 0 \\ \therefore \:4 \: sin \: x(sin \: x - 1) + 2(sin \: x - 1)  = 0 \\ \therefore \:(sin \: x - 1)(4 \: sin \: x+ 2) = 0 \\  \therefore \:(sin \: x - 1) = 0 \:  \: or \:  \: (4 \: sin \: x+ 2) = 0 \\  \therefore \:sin \: x = 1 \:  \: or \:  \: \:sin \: x = -  \frac{2}{4}  \\  \therefore \:sin \: x = 1 \:  \: or \:  \: \:sin \: x = -  \frac{1}{2}  \\ \therefore \:sin \: x = sin \:  \frac{ \pi}{2} \:  \: or \:  \: \:sin \: x = sin (\pi +  \frac{\pi}{6} ) \\ \therefore \:x = \frac{ \pi}{2} \:  \: or \:  \: x =  \frac{7\pi}{6}

Similar questions