Math, asked by andrea9192, 9 hours ago

solve show your solution​

Attachments:

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-1}}

\rm \:  {x}^{2}  + 9x + 14 > 0

\rm \:  {x}^{2}  + 7x + 2x + 14 > 0

\rm \: x(x + 7) + 2(x + 7) > 0

\rm \: (x + 7)(x + 2) > 0

\bf\implies \:x <  - 7 \:  \: or \:  \: x >  - 2

\large\underline{\sf{Solution-2}}

\rm \:  {x}^{2} - 10x + 16 < 0

\rm \:  {x}^{2} - 8x - 2x + 16 < 0

\rm \: x(x - 8) - 2(x - 8) < 0

\rm \: (x - 8)(x - 2) < 0

\bf\implies \:2 < x < 8

\large\underline{\sf{Solution-3}}

\rm \:  {x}^{2} + 6x \geqslant  - 5

\rm \:  {x}^{2} + 6x + 5 \geqslant 0

\rm \:  {x}^{2} + x + 5x  + 5\geqslant0

\rm \: x(x + 1) + 5(x + 1) \geqslant 0

\rm \: (x + 1)(x + 5) \geqslant 0

\bf\implies \:x \leqslant  - 5 \:  \: or \:  \: x \geqslant  - 1

\large\underline{\sf{Solution-4}}

\rm \:  {x}^{2} - 5x - 14 > 0

\rm \:  {x}^{2} - 7x + 2x - 14 > 0

\rm \: x(x - 7) + 2(x - 7) > 0

\rm \: (x - 7)(x + 2) > 0

\bf\implies \:x <  - 2 \:  \: or \:  \: x > 7

\large\underline{\sf{Solution-5}}

\rm \:  {2x}^{2} + 11x + 12  <  0

\rm \:  {2x}^{2} + 8x + 3x + 12  <  0

\rm \: 2x(x + 4) + 3(x + 4) < 0

\rm \: (x + 4)(2x  + 3) < 0

\bf\implies \: - 4 < x <  - \dfrac{3}{2}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Basic Concept Used

If a and b are two positive real numbers such that a < b,

\boxed{\tt{ (x - a)(x - b) &lt; 0 \: \rm\implies \: \: a &lt; x &lt; b \: }} \\

\boxed{\tt{ (x - a)(x - b)  \leqslant  0 \: \rm\implies \: \: a \leqslant  x  \leqslant  b \: }} \\

\boxed{\tt{ (x - a)(x - b) &gt; 0 \:  \: \rm\implies \:x &lt; a \:  \: or \:  \: x &gt; b \: }} \\

\boxed{\tt{ (x - a)(x - b) \geqslant  0 \:  \: \rm\implies \:x  \leqslant  a \:  \: or \:  \: x \geqslant  b \: }} \\

Answered by haianh289
0

Answer:

1. x > -2 or x < -7

2. 2 < x < 8

3. x ≥ -1 or x ≤ -5

4. x > 7 or x < -2  

5. -4 < x < -1,5

Step-by-step explanation:

1.

x² + 9x + 14 = (x + 2)(x + 7) > 0

⇒ x + 2 > 0, x + 7 > 0 ↔ x > -2, x > -7 ⇒ x > -2

or x + 2 < 0, x + 7 < 0 ↔ x < -2, x < -7 ⇒ x < -7

2.

x² - 10x + 16 = (x - 2)(x - 8) < 0

x - 2 > x - 8 ⇒ x - 2 > 0, x - 8 < 0

⇔ 2 < x < 8

3.

x² + 6x ≥ -5

x² + 6x + 5 = (x + 1)(x + 5) ≥ 0

⇒ x + 1 ≥ 0, x + 5 ≥ 0 ↔ x ≥ -1, x ≥ -5 ⇒ x ≥ -1

or x + 1 ≤ 0, x + 5 ≤ 0 ↔ x ≤ -1, x ≤ -5 ⇒ x ≤ -5

4.

x² - 5x - 14 = (x + 2)(x - 7) > 0

⇒ x + 2 > 0, x - 7 > 0 ↔ x > -2, x > 7 ⇒ x > 7

or x + 2 < 0, x - 7 < 0 ↔ x < -2, x < 7 ⇒ x < -2

5.

2x² + 11x + 12 = (x + 4)(2x + 3) < 0

⇒ x + 4 < 0, 2x + 3 > 0 ↔ x < -4, x > -1.5 (false)

or x + 4 > 0, 2x + 3 < 0 ↔ x > -4, x < -1.5 ⇒ -4 < x < -1.5

Similar questions