Math, asked by ishika3414, 1 year ago

solve sin-1x + sin-1y = 2pi/3 and cos-1x - cos-1y = pi/3

Answers

Answered by MaheswariS
36

Answer:

The solution is

x= 1/2 and y= 1

Step-by-step explanation:

Formula used;

sin^{-1}x+cos^{-1}x=\frac{\pi}{2}

Now,\\\\sin^{-1}x+sin^{-1}y=\frac{2\pi}{3}\\\\\frac{\pi}{2}-cos^{-1}x+\frac{\pi}{2}-cos^{-1}y=\frac{2\pi}{3}\\\\\pi-(cos^{-1}x+cos^{-1}y)=\frac{2\pi}{3}\\\\cos^{-1}x+cos^{-1}y=\frac{3\pi-2\pi}{3}\\\\cos^{-1}x+cos^{-1}y=\frac{\pi}{3}......(1)\\\\cos^{-1}x-cos^{-1}y=\frac{\pi}{3}......(2)

Adding (1) and (2) we get

2cos^{-1}x=2\frac{\pi}{3}\\\\cos^{-1}x=\frac{\pi}{3}\\\\x=cos\frac{\pi}{3}=\frac{1}{2}

put cos^{-1}x=\frac{\pi}{3} in (1) we get

\frac{\pi}{3}+cos^{-1}y=\frac{\pi}{3}\\\\cos^{-1}y=0\\\\y = cos0=1

Answered by parmesanchilliwack
7

Answer: The solution is,

x = √3/2 and y = 1

Step-by-step explanation:

Here, the given equations,

sin^{-1} x + sin^{-1} y = \frac{2\pi}{3} -------(1)

cos^{-1}-cos^{-1}=\frac{\pi}{3} -------(2)

Since,

sin^{1}x+cos^{-1}=\frac{\pi}{2}\implies cos^{-1}=\frac{\pi}{2}-sin^{-1}x

Similarly,

cos^{-1}y=\frac{\pi}{2}-sin^{-1}y,

Thus, from equation (2),

\frac{\pi}{2}-sin^{-1}x-\frac{\pi}{2}+sin^{-1}y=\frac{\pi}{3}

\implies -sin^{-1}x+sin^{-1}y=\frac{\pi}{3}  ---------(3),

Equation (1) + equation (3),

We get,

2sin^{-1}y=\frac{2\pi}{3}+\frac{\pi}{3}=\pi

\implies sin^{-1}y = \frac{\pi}{2}

\implies y = 1

Now, Equation (1) - Equation (3),

We get,

2sin^{-1}x=\frac{2\pi}{3}-\frac{\pi}{3}=\frac{\pi}{3}

\implies sin^{-1}x = \frac{\pi}{6}

\implies x = \frac{\sqrt{3}}{2}

Similar questions